最优化问题举例课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最优化问题举例课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 优化 问题 举例 课件
- 资源描述:
-
1、3.4生活中的生活中的优化问题举例优化问题举例第三章第三章 导数及其应用导数及其应用1一、如何判断函数的单调性?f(x)为为增函数增函数f(x)为为减函数减函数 设函数设函数y=f(x)在在 某个区间某个区间 内可导,内可导,二、如何求函数的极值与最值?求函数极值的一般步骤求函数极值的一般步骤(1)确定定义域)确定定义域(2)求导数)求导数f(x)(3)求)求f(x)=0的根的根(4)列表)列表(5)判断)判断求求f(x)在在闭区间闭区间a,b上的最值的步骤:上的最值的步骤:(1)求求f(x)在区间在区间(a,b)内极值;内极值;(2)将将y=f(x)的各极值与的各极值与f(a)、f(b)比较
2、比较,从而确定函数的最值。从而确定函数的最值。2 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具,本节我们运用导数,解决一些生活中的 优化问题.3例例1 1:海报版面尺寸的设计海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图宣传。现让你设计一张如图3.4-1所示的竖向张贴所示的竖向张贴的海报,要求版心面积为的海报,要求版心面积为128cm2,上、下两边各,上、下两边各空空2cm,左、右两边各空,左、右两边各空1cm,如何设计海报
3、的,如何设计海报的尺寸,才能使四周空白面积最小?尺寸,才能使四周空白面积最小?x图图3.4-1 分析:已知版心的面分析:已知版心的面积,你能否设计出版心积,你能否设计出版心的高,求出版心的宽,的高,求出版心的宽,从而列出海报四周的面从而列出海报四周的面积来?积来?4 128:,xdmdmx解 设版心的高为则版心的宽为此时四周空白面积为 0,160 xs x当时,;你还有其他解法你还有其他解法吗?例如用基本吗?例如用基本不等式行不?不等式行不?128()(4)(2)128S xxx51228,0 xxx2512()2S xx求导数,得2512()20S xx令:1616xx解 得:,(舍)128
4、128816x于是宽为:16,0.xs x当时,因此,因此,x=16是函数是函数S(x)的极小值,也是最小值点。所以,的极小值,也是最小值点。所以,当版心高为当版心高为16cm,宽为,宽为8cm时,能使四周空白面积最时,能使四周空白面积最小。小。5 2、在实际应用题目中,若函数、在实际应用题目中,若函数 f(x)在定义域在定义域内内只有一个极值点只有一个极值点x0,则不需与端点比较,则不需与端点比较,f(x0)即是所求的最大值或最小值即是所求的最大值或最小值.说明说明1、设出变量找出函数关系式;、设出变量找出函数关系式;(所说区间的也适用于开区间或无穷区间所说区间的也适用于开区间或无穷区间)确
5、定出定义域确定出定义域;所得结果符合问题的实际意义。所得结果符合问题的实际意义。6练习练习1:将一段长为:将一段长为12cm的铁丝围成一个矩的铁丝围成一个矩形,则这个矩形面积的最大值为多少?形,则这个矩形面积的最大值为多少?解:解:2229,:9)3(3)()6,3()(,)3,0()(30,0)(30)()6026)()60666cmcmScmxxSxSxSxxSxxSxxxSxxxxxxSScmxxcm它的面积最大为当矩形是正方形时答处取到最大值在是单调递减的在上是单调递增的在得时当,解得令()()(,面积为),则另一边为(设矩形的一边为结论:周长为定值的矩形中,正方形的面积最结论:周长为
6、定值的矩形中,正方形的面积最大。大。7练习练习2 2、一条长为、一条长为l l的铁丝截成两段,分别弯成两个正的铁丝截成两段,分别弯成两个正方形,要使两个正方形的面积和最小,两段铁丝的长方形,要使两个正方形的面积和最小,两段铁丝的长度分别是多少?度分别是多少?则两个正方形面积和为则两个正方形面积和为2221)4()4(xlxssS)22(16122llxx解:设两段铁丝的长度分别为解:设两段铁丝的长度分别为x,l-x,其中其中0 x0它表示它表示 f(r)单调递增,单调递增,即半径越大,利润越高;即半径越大,利润越高;当半径当半径r时,时,f(r)0 它表示它表示 f(r)单调递减单调递减,即半
展开阅读全文