书签 分享 收藏 举报 版权申诉 / 8
上传文档赚钱

类型湘教版数学九年级上册第3课时-反比例函数的图象与性质的综合应用教案与反思.doc

  • 上传人(卖家):刘殿科
  • 文档编号:6077783
  • 上传时间:2023-05-25
  • 格式:DOC
  • 页数:8
  • 大小:275.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《湘教版数学九年级上册第3课时-反比例函数的图象与性质的综合应用教案与反思.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湘教版 数学 九年级 上册 课时 反比例 函数 图象 性质 综合 应用 教案 反思 下载 _九年级上册_湘教版(2024)_数学_初中
    资源描述:

    1、第3课时 反比例函数的图象与性质的综合应用路漫漫其修远兮,吾将上下而求索。屈原离骚江南学校 李友峰【知识与技能】1.会求反比例函数的表达式;2.综合运用一次函数和反比例函数的知识解决有关问题;3.借助一次函数和反比例函数的图象解决某些简单的实际问题【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】1.会用待定系数法求反比例函数的表达式;2.理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分

    2、析、解决问题,理解反比例函数的性质.一、情境导入,初步认识1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质?4.我们学会了根据函数表达式画函数图象,那么你能根据一些条件求反比例函数的表达式吗?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.思考:已知反比例函数的图象经过点P(2,4)(1)求k的值,并写出该函数的表达式;(2)判断点A(-2,-4),B(3,5)是否在这个函数的图象上;(3)这个函数的图象位于哪些象限?在每个象限内,函数值y随自变量x的增大如何变化?分析: (1)题中已知图象经过点P(2,4),即表

    3、明把P点坐标代入解析式成立,这样能求出k,解析式也就确定了.(2)要判断A、B是否在这条函数图象上,就是把A、B的坐标代入函数解析式中,如能使解析式成立,则这个点就在函数图象上.否则不在.(3)根据k的正负性,利用反比例函数的性质来判定函数图象所在的象限、y随x的值的变化情况.【归纳结论】这种求解析式的方法叫做待定系数法求解析式.2.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,其中,k1,k2是常数,且均不为0由于这两个函数的图象交于P(-3,4),则P(-3,4)是

    4、这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,解得,所以,正比例函数解析式为,反比例函数解析式为.函数图象如下图.【教学说明】通过图象,让学生掌握一次函数与反比例函数的综合应用.3.在反比例数的图象上取两点P(1,6),Q(6,1),过点P分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1=_;过点Q分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2=_;S1与S2有什么关系?为什么?【归纳结论】反比例函数(k0)中比例系数k的几何意:过双曲线(k0)上任意一点引x轴、y轴的平行线,与坐标轴成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的

    5、性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力三、运用新知,深化理解1.已知如图,A是反比例函数的图象上一点,AB丄x轴于点B,且ABO的面积是3,则k的值是( )A.3 B.-3 C.6 D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S解:根据题意可知:SAOB3,又反比例函数的图象位于第一象限,k0,则k6【答案】 C2.反比例函数与在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则AOB的面积为( )A. B.2 C.3 D.1分析:分别过A、B作x

    6、轴的垂线,垂足分别为D、E,过B作BCy轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、AOE、BOC的面积,进而可得出结论解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BCy轴,点C为垂足,由反比例函数系数k的几何意义可知,S四边形OEAC=6,SAOE=3,SBOC=1,SAOB=S四边形OEAC-SAOE-SBOC=6-3-1=2【答案】 B3.已知点P(2,2)在反比例函数 (k0)的图象上,(1)当x=-3时,求y的值;(2)当1x3时,求y的取值范围解: (1)点P(2,2)在反比例函数的图象上,2=,即k=4,反比例函数的解析式为当x=-3时,y=

    7、(2)当x=1时,y=4;当x=3时,y=,又反比例函数在x0时y值随x值的增大而减小,当1x3时,y的取值范围为y44.已知直线yxb经过点A(3,0),并与双曲线的交点为B(-2,m)和C,求k、b的值解:点A(3,0)在直线yxb上,所以03b,b-3一次函数的解析式为:yx-3又因为点B(-2,m)也在直线yx-3上,所以m-2-3-5,即B(-2,-5)而点B(-2,-5)又在反比例函数上,所以k-2(-5)105.已知反比例函数的图象与一次函数yk2x-1的图象交于A(2,1)(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系分析: (1)因

    8、为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值(2)把点A关于坐标原点的对称点A坐标代入一次函数和反比例函数解析式中,可知A是否在这两个函数图象上解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k121212k2-1,k21所以反比例函数的解析式为:;一次函数解析式为:yx-1(2)点A(2,1)关于坐标原点的对称点是A(-2,-1)把A点的横坐标代入反比例函数解析式得,所以点A在反比例函数图象上把A点的横坐标代入一次函数解析式得,y-2-1-3,所以点A不在一次函数图象上6.如图,一次函数ykxb的图象与反比例函数的图象交于A、B两点

    9、(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围分析: (1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标解(1)观察图象可知,反比例函数的图象过点A(-2,1),m-21-2所以反比例函数的解析式为:又点B(1,a)也在反比例函数图象上,a=即B(1,-2)因为一次函数图象过点A、B所以解得,一次函数解析式为:y-x-1(2)观察图象可知,

    10、当x-2或0x1时,一次函数的值大于反比例函数值.【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.2”中第6题.教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律.最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件.在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如

    11、何学,让学生自己去探究,自己去学习,去获取知识.在中学数学课程标准中明确规定:教师不仅是学生的引导者,也是学生的合作者.教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获.【素材积累】海明威和他的“硬汉形象” 美国作家海明威是一个极具进取精神的硬汉子。他曾尝试吃过蚯蚓、蜥蜴,摘墨西哥斗牛场亮过相,闯荡过非洲的原始森林,两次世界大战都上了战场。第一次世界大战时,19岁的他见一意大利士兵负伤,便冒着奥军的炮火上去抢救,结果自己也被炸伤了腿,但他仍背着伤员顽强前进。突然间,炮击停止,探照灯大亮,海明威终于回到阵地。原来是他的英勇行为感动了奥军将领,下令放他过去。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湘教版数学九年级上册第3课时-反比例函数的图象与性质的综合应用教案与反思.doc
    链接地址:https://www.163wenku.com/p-6077783.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库