最新高考数学难点题型拔高训练含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新高考数学难点题型拔高训练含解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 高考 数学 难点 题型 拔高 训练 解析 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、难点题型拔高练(一)1过抛物线yx2的焦点F的直线交抛物线于A,B两点,点C在直线y1上,若ABC为正三角形,则其边长为()A11B12C13 D14解析:选B由题意可知,焦点F(0,1),易知过焦点F的直线的斜率存在且不为零,设为k(k0),则该直线方程为ykx1(k0),联立方程得x24(kx1),即x24kx40,设A(x1,y1),B(x2,y2),x1x24k,x1x24,设线段AB的中点为M,则M(2k,2k21),|AB|4(1k2),设C(m,1),连接MC,ABC为等边三角形,kMC,m2k34k,点C(m,1)到直线ykx1的距离|MC|AB|,4(1k2),2(1k2),
2、k,|AB|4(1k2)12.2已知函数f(x)2sin(x)(0,0),f ,f 0,且f(x)在(0,)上单调下列说法正确的是()ABf C函数f(x)在上单调递增D函数f(x)的图象关于点中心对称解析:选C由题意得函数f(x)的最小正周期T,因为f(x)在(0,)上单调,所以,得01.因为f ,f 0,所以f(x)在(0,)上单调递减,又0,01,所以解得所以f(x)2sin.选项A显然不正确因为f 2sin2sin,所以B不正确因为当x时,0x,所以函数f(x)在上单调递增,故C正确因为f 2sin2sin0,所以点不是函数f(x)图象的对称中心,故D不正确3已知函数f(x),g(x)
3、,若函数yf(g(x)a有三个不同的零点x1,x2,x3(其中x1x2x3),则2g(x1)g(x2)g(x3)的取值范围为_解析:g(x),g(x).当0x0,g(x)单调递增;当xe时,g(x)0,g(x)单调递减作出函数g(x)的大致图象如图所示,令g(x)t,由f(t)aa0,得关于t的一元二次方程t2(a1)t1a0,又f(g(x)a0有三个根x1,x2,x3,且x1x2x3,结合g(x)的图象可知关于t的一元二次方程有两个不等实根,不妨设为t1,t2,且t1t2,则0t1,t2或t10t20,得1a4.当0t1,t2时,0t1t24,不符合题意,舍去t10t2,g(x1)t1,g(
4、x2)g(x3)t2,2g(x1)g(x2)g(x3)2t12t22(t1t2)2(1a)令1a,(t)t2(a1)t1at2t,由t10t2可知,即解得b0)的左、右焦点分别为F1,F2,且离心率为,M为椭圆上任意一点,当F1MF290时,F1MF2的面积为1.(1)求椭圆C的方程;(2)已知A是椭圆C上异于椭圆顶点的一点,连接并延长AF1,AF2,分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2(O为坐标原点),求证:k1k2为定值解:(1)设|MF1|r1,|MF2|r2,由题意,得a,c1,则b2a2c21,椭圆C的方程为y21.(2)证明:易知直线AF1,AF2的
5、斜率均不为0.设B(x1,y1),D(x2,y2),当直线AF1的斜率不存在时,不妨令A,则B,又F1(1,0),F2(1,0),直线AF2的方程为y(x1),将其代入y21,整理可得5x22x70,x2,y2,则D ,直线BD的斜率k1,直线OA的斜率k2,k1k2.当直线AF2的斜率不存在时,同理可得k1k2.当直线AF1,AF2的斜率都存在且不为0时,设A(x0,y0),则x0y00,则直线AF1的方程为y(x1),联立,得消去y可得,(x01)22yx24yx2y2(x01)20,又y1,2y2x,(32x0)x22(2x)x3x4x00,x1x0,x1,则y1,B .直线AF2的方程
6、为y(x1),同理可得D,直线BD的斜率k1,直线OA的斜率k2,k1k2.综上,k1k2为定值,且定值为.5.已知函数f(x)(xb)(exa)(b0)的图象在点(1,f(1)处的切线方程为(e1)xeye10.(1)求a,b;(2)若方程f(x)m有两个实数根x1,x2,且x1x2,证明:x2x11.解:(1)由题意得f(1)0,所以f(1)(1b)0,所以a或b1.又f(x)(xb1)exa,所以f(1)a1,若a,则b2e0矛盾,故a1,b1.(2)证明:由(1)可知f(x)(x1)(ex1),f(0)0,f(1)0,设曲线yf(x)在点(1,0)处的切线方程为yh(x),则h(x)(
7、x1),令F(x)f(x)h(x),则F(x)(x1)(ex1)(x1),F(x)(x2)ex,当x2时,F(x)(x2)ex2时,设G(x)F(x)(x2)ex,则G(x)(x3)ex0,故函数F(x)在(2,)上单调递增,又F(1)0,所以当x(,1)时,F(x)0,所以函数F(x)在区间(,1)上单调递减,在区间(1,)上单调递增,故F(x)F(1)0,所以f(x)h(x),所以f(x1)h(x1)设h(x)m的根为x1,则x11,又函数h(x)单调递减,且h(x1)f(x1)h(x1),所以x1x1,设曲线yf(x)在点(0,0)处的切线方程为yt(x),易得t(x)x,令T(x)f(
8、x)t(x)(x1)(ex1)x,T(x)(x2)ex2,当x2时,T(x)(x2)ex222时,设H(x)T(x)(x2)ex2,则H(x)(x3)ex0,故函数T(x)在(2,)上单调递增,又T(0)0,所以当x(,0)时,T(x)0,所以函数T(x)在区间(,0)上单调递减,在区间(0,)上单调递增,所以T(x)T(0)0,所以f(x)t(x),所以f(x2)t(x2)设t(x)m的根为x2,则x2m,又函数t(x)单调递增,且t(x2)f(x2)t(x2),所以x2x2.又x1x1,所以x2x1x2x1m1.难点题型拔高练(二)1已知A,B,C,D四点均在以点O1为球心的球面上,且AB
9、ACAD2,BCBD4,CD8.若球O2在球O1内且与平面BCD相切,则球O2直径的最大值为()A1B2C4 D8解析:选D由题意,得BC2BD2CD2,所以BCBD,所以BCD为等腰直角三角形如图,设CD的中点为O,则O为BCD的外心,且外接圆半径r4.连接AO,BO,因为ACAD2,所以AOCD,AO2,又BO4,所以AO2BO2AB2,所以AOBO,所以AO平面BCD,所以球心O1在直线AO上设球O1的半径为R,则有r2OOR2,即16(R2)2R2,解得R5.当球O2直径最大时,球O2与平面BCD相切,且与球O1内切,此时A,O,O1,O2四点共线,所以球O2直径的最大值为ROO18.
10、2已知函数f(x)(xa)33xa(a0)在1,b上的值域为22a,0,则b的取值范围是()A0,3 B0,2C2,3 D(1,3解析:选A由题意,得f(x)3(xa)233(xa1)(xa1)由f(x)0,得xa1或xa1,所以当a1xa1时,f(x)0,当xa1时,f(x)0,所以函数f(x)在(a1,a1)上单调递减,在(,a1),(a1,)上单调递增又f(a1)2a2,f(a1)2a2.若f(1)2a2,即(1a)33a2a2,则a1,此时f(x)(x1)33x1,且f(x)4时,x1或x2;由f(x)0,解得x0或x3.因为函数f(x)在1,b上的值域为4,0,所以0b3.若f(1)
11、2a2,因为a0,所以a11,要使函数f(x)在1,b上的值域为22a,0,需a1b,此时a11,b,所以即无解综上所述,b的取值范围是0,33在平面四边形ABCD中,AB1,AC,BDBC,BD2BC,则AD的最小值为_解析:设BAC,ABD(0,),则ABC.在ABC中,由余弦定理,得BC2AB2AC22ABACcos 62cos ,由正弦定理,得,即BC.在ABD中,由余弦定理,得AD2AB2DB22ABDBcos 14BC24BCcos 14(62cos )4cos 258cos 4sin 2520sin()(其中sin ,cos ),所以当sin()1,即sin ,cos 时,AD2
12、取得最小值5,所以AD的最小值为.答案:4椭圆E:1(ab0)的右顶点为A,右焦点为F,上、下顶点分别是B,C,|AB|,直线CF交线段AB于点D,且|BD|2|DA|.(1)求E的标准方程;(2)是否存在直线l,使得l交椭圆于M,N两点,且F恰是BMN的垂心?若存在,求l的方程;若不存在,说明理由解:(1)法一:由题意知F(c,0),A(a,0),B(0,b),C(0,b),所以直线AB的方程为1,直线CF的方程为1,由得,xD.因为|BD|2|DA|,所以2,所以| |,得a,解得a2c,所以bc.因为|AB|,即,所以c,所以c1,a2,b,所以椭圆E的标准方程为1.法二:如图,设椭圆E
13、的左焦点为G,连接BG,由椭圆的对称性得BGCF,则2,即|GF|2|FA|,由题意知F(c,0),则|GF|2c,|FA|ac,所以2c2(ac),得a2c,所以bc.因为|AB|,即,即c,所以c1,a2,b,所以椭圆E的标准方程为1.(2)假设存在直线l,使得F是BMN的垂心,连接BF,并延长,连接MF,并延长,如图,则BFMN,MFBN.由(1)知,B(0,),F(1,0),所以直线BF的斜率kBF,易知l的斜率存在,设为k,则kBFk1,所以k,设l的方程为yxm,M(x1,y1),N(x2,y2),由消去y得13x28mx12(m23)0,由(8m)241312(m23)0得,m.
14、x1x2,x1x2.因为MFBN,所以0,因为(1x1,y1),(x2,y2),所以(1x1)x2y1(y2)0,即(1x1)x20,整理得(x1x2)x1x2m2m0,所以m2m0,整理得21m25m480,解得m或m.当m时,M或N与B重合,不符合题意,舍去;当m时,满足m.所以存在直线l,使得F是BMN的垂心,l的方程为yx.5已知函数f(x)(ax22ax1)ex2.(1)讨论f(x)的单调区间;(2)若a,求证:当x0时,f(x)0,f(x)0,所以f(x)的单调递增区间为(,)当a0时,(4a)24a(2a1)4a(2a1),()当a时,0,令u(x)0,得x1,x2,且x10,f
15、(x)0,当x(x1,x2)时,u(x)0,f(x)0,所以f(x)的单调递增区间为, ,单调递减区间为.()当0a时,0,所以u(x)0,f(x)0,所以f(x)的单调递增区间为(,)当a0,令u(x)0,得x1,x2,且x20,f(x)0,当x(,x2)(x1,)时,u(x)0,f(x)时,f(x)的单调递增区间为,单调递减区间为;当0a时,f(x)的单调递增区间为(,);当a0时,f(x)的单调递增区间为,单调递减区间为, .(2)证明:f(x)(ax22ax1)ex2aex(x22x)ex2,令(a)aex(x22x)ex2,显然当x0时,ex(x22x)0,所以当a时,(a)ex2.
16、所以要证当x0时,f(x)0,只需证当x0时,ex20,即证当x0时,ex(x22x7)140.令g(x)ex(x22x7)14,则g(x)ex(x24x5)(x1)(x5)ex,所以当x(0,1)时,g(x)0,g(x)在(1,)上单调递增,所以当x0时,g(x)g(1)144e0,从而当x0时,f(x)0,令f(x)0,得x2或exkx2(x0),由x2是函数f(x)的唯一极值点知exkx2(x0)恒成立或exkx2(x0)恒成立,由yex(x0)和ykx2(x0)的图象可知,只能是exkx2(x0)恒成立法一:由x0知,exkx2,则k,设g(x),则kg(x)min.由g(x),得当x
展开阅读全文