武汉市初中数学四边形知识点.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《武汉市初中数学四边形知识点.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 武汉市 初中 数学 四边形 知识点 下载 _其它资料_数学_初中
- 资源描述:
-
1、武汉市初中数学四边形知识点一、选择题1如图,菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(0,2),DOB=60,点P是对角线OC上的一个动点,已知A(1,0),则AP+BP的最小值为()A4B5C3D【答案】D【解析】【分析】点B的对称点是点D,连接AD,则AD即为AP+BP的最小值,求出点D坐标解答即可【详解】解:连接AD,如图,点B的对称点是点D,AD即为AP+BP的最小值,四边形OBCD是菱形,顶点B(0,),DOB=60,点D的坐标为(3,),点A的坐标为(1,0),AD=,故选:D【点睛】此题考查菱形的性质,关键是根据两点坐标得出距离2如图,在菱形中,点在边上,.若,则边的
2、长为( )ABCD【答案】B【解析】【分析】由菱形的性质得出ADBC,BC=AB=AD,由直角三角形的性质得出AB=BC=BE,在RtABE中,由勾股定理得:BE2+22=(BE)2,解得:BE=,即可得出结果【详解】四边形是菱形,.,.在中,由勾股定理得,解得,.故选B.【点睛】此题考查菱形的性质,含30角的直角三角形的性质,勾股定理,熟练掌握菱形的性质,由勾股定理得出方程是解题的关键3如图,在菱形中,点是这个菱形内部或边上的一点,若以点,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )ABCD【答案】D【解析】【分析】分三种情形讨论若以边BC为底若以边PC为底若以边
3、PB为底分别求出PD的最小值,即可判断【详解】解:在菱形ABCD中,ABC=60,AB=1,ABC,ACD都是等边三角形,若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;若以边PC为底,PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足PBC是等腰三角形,当点P在BD上时,PD最小,最小值为若以边PB为底,PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足PBC为等腰三角形,当点P与点D重
4、合时,PD最小,显然不满足题意,故此种情况不存在; 上所述,PD的最小值为 故选D【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型4如图,在平行四边形ABCD中,AC=4,BD=6,P是BD上的任一点,过点P作EFAC,与平行四边形的两条边分别交于点E、F,设BP=x,EF=y,则能反映y与x之间关系的图象是()ABCD【答案】C【解析】【分析】【详解】图象是函数关系的直观表现,因此须先求出函数关系式分两段求:当P在BO上和P在OD上,分别求出两函数解析式,根据函数解析式的性质即可得出函数图象解:设AC与BD
5、交于O点,当P在BO上时,EFAC,即,;当P在OD上时,有,y=故选C5如图,矩形ABCD的对角线AC、BD相交于点O,AB:BC2:1,且BEAC,CEDB,连接DE,则tanEDC( )ABCD【答案】B【解析】【分析】过点E作EF直线DC交线段DC延长线于点F,连接OE交BC于点G根据邻边相等的平行四边形是菱形即可判断四边形OBEC是菱形,则OE与BC垂直平分,易得EF=x,CF=x再由锐角三角函数定义作答即可【详解】解:矩形ABCD的对角线AC、BD相交于点O,AB:BC2:1,BCAD,设AB2x,则BCx如图,过点E作EF直线DC交线段DC延长线于点F,连接OE交BC于点GBEA
6、C,CEBD,四边形BOCE是平行四边形,四边形ABCD是矩形,OBOC,四边形BOCE是菱形OE与BC垂直平分,EFADx,OEAB,四边形AOEB是平行四边形,OEAB2x,CFOExtanEDC故选:B【点睛】本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型6如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D【答案】D【解析】解:设ABP中AB边上的高是hSPAB=S矩形ABCD, ABh=ABAD,h=AD=
7、2,动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE就是所求的最短距离在RtABE中,AB=5,AE=2+2=4,BE= =,即PA+PB的最小值为故选D7已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是A8B9C10D12【答案】A【解析】试题分析:设这个多边形的外角为x,则内角为3x,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数解:设这个多边形的外角为x,则内角为3x,由题意得:x+3x=180,解得x=45,这个多边形的边数
8、:36045=8,故选A考点:多边形内角与外角8如图,菱形ABCD中,点P是CD的中点,BCD=60,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BMAE于点M,作KNAE于点N,连结MO、NO,以下四个结论:OMN是等腰三角形;tanOMN=;BP=4PK;PMPA=3PD2,其中正确的是()ABCD【答案】B【解析】【分析】根据菱形的性质得到ADBC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理ADPECP,由相似三角形的性质得到AD=CE,作PICE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到,得到B
9、P=3PK,故错误;作OGAE于G,根据平行线等分线段定理得到MG=NG,又OGMN,证明MON是等腰三角形,故正确;根据直角三角形的性质和锐角三角函数求出OMN=,故正确;然后根据射影定理和三角函数即可得到PMPA=3PD2,故正确【详解】解:作PICE交DE于I,四边形ABCD为菱形,ADBC,DAP=CEP,ADP=ECP,在ADP和ECP中,ADPECP,AD=CE,则,又点P是CD的中点,AD=CE,BP=3PK,故错误;作OGAE于G,BM丄AE于M,KN丄AE于N,BMOGKN,点O是线段BK的中点,MG=NG,又OGMN,OM=ON,即MON是等腰三角形,故正确;由题意得,BP
10、C,AMB,ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,点O是线段BK的中点,PB=3PO,OG=BM=,MG=MP=,tanOMN=,故正确;ABP=90,BMAP,PB2=PMPA,BCD=60,ABC=120,PBC=30,BPC=90,PB=PC,PD=PC,PB2=3PD,PMPA=3PD2,故正确故选B【点睛】本题考查相似形综合题9如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE:EC=2:1,则线段CH的长是( )A3B4C5D6【答案】B【解析】试题分析:设CHx, 因为B
11、E:EC2:1,BC9,所以,EC3, 由折叠知,EHDH9x,在RtECH中,由勾股定理,得:,解得:x4,即CH=4考点:(1)图形的折叠;(2)勾股定理10如图,在ABCD中,E为边AD上的一点,将DEC沿CE折叠至DEC处,若B48,ECD25,则DEA的度数为()A33B34C35D36【答案】B【解析】【分析】由平行四边形的性质可得DB,由折叠的性质可得DD,根据三角形的内角和定理可得DEC,即为DEC,而AEC易求,进而可得DEA的度数【详解】解:四边形ABCD是平行四边形,DB48,由折叠的性质得:DD48,DECDEC180DECD107,AEC=180DEC=1801077
展开阅读全文