书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型新高考数学复习知识点专题提升训练45-直线与圆锥曲线的综合问题.doc

  • 上传人(卖家):刘殿云
  • 文档编号:6039368
  • 上传时间:2023-05-23
  • 格式:DOC
  • 页数:14
  • 大小:113.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《新高考数学复习知识点专题提升训练45-直线与圆锥曲线的综合问题.doc》由用户(刘殿云)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新高 数学 复习 知识点 专题 提升 训练 45 直线 圆锥曲线 综合 问题 下载 _二轮专题_高考专区_数学_高中
    资源描述:

    1、新高考数学复习知识点专题提升训练 专题45 直线与圆锥曲线的综合问题A级基础夯实练1(2021广东肇庆质检)直线yx3与双曲线1的交点个数是()A1 B2 C1或2 D0解析:选A.因为直线yx3与双曲线1的一条渐近线yx平行,所以它与双曲线只有1个交点2(2021福建厦门模拟)设F1,F2分别是椭圆1(ab0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若F1PQ60,|PF1|PQ|,则椭圆的离心率为()A. B C. D解析:选D.|PF1|PQ|,且F1PQ60,F1PQ为等边三角形,周长为4a,F1PQ的边长为,在PF1F2中,|PF1|,|PF2|,|F1F2|2c,(2c)2,

    2、即a23c2,e2,e.3已知双曲线1(a0,b0)与直线y2x有交点,则双曲线离心率的取值范围为()A(1,) B(1,C(,) D,)解析:选C.因为双曲线的一条渐近线方程为yx,则由题意得2,所以e .4过抛物线y22x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线()A有且只有一条 B有且只有两条C有且只有三条 D有且只有四条解析:选B.若直线AB的斜率不存在时,则横坐标之和为1,不符合题意若直线AB的斜率存在,设直线AB的斜率为k,则直线AB为yk,代入抛物线y22x得,k2x2(k22)xk20,因为A、B两点的横坐标之和为2.所以k.所以这样的直线有

    3、两条5(2021安徽皖南八校联考)若直线axby30与圆x2y23没有公共点,设点P的坐标为(a,b),则过点P的一条直线与椭圆1的公共点的个数为()A0 B1 C2 D1或2解析:选C.由题意得,圆心(0,0)到直线axby30的距离为,所以a2b23.又a,b不同时为零,所以0a2b23.由0a2b23,可知|a|,|b|,由椭圆的方程知其长半轴长为2,短半轴长为,所以P(a,b)在椭圆内部,所以过点P的一条直线与椭圆1的公共点有2个,故选C.6(2021江西九江模拟)过抛物线y28x的焦点F的直线交抛物线于A,B两点,交抛物线的准线于C,若|AF|6,则的值为()A. B C. D3解析

    4、:选D.设A(x1,y1)(y10),B(x2,y2),C(2,y3),则x126,解得x14,y14,直线AB的方程为y2(x2),令x2,得C(2,8),联立方程解得B(1,2),所以|BF|123,|BC|9,所以3.7(2021江西五市八校模拟)已知直线y1x与双曲线ax2by21(a0,b0)的渐近线交于A、B两点,且过原点和线段AB中点的直线的斜率为,则的值为()A BC D解析:选A.由双曲线ax2by21知其渐近线方程为ax2by20,设A(x1,y1),B(x2,y2),则有axby0,axby0,由得a(xx)b(yy)即a(x1x2)(x1x2)b(y1y2)(y1y2)

    5、,由题意可知x1x2,且x1x20,所以,设AB的中点为M(x0,y0),则kOM,又知kAB1,所以(1),所以,故选A.8已知抛物线C:y22px(p0)的焦点为F,过点F且倾斜角为60的直线l与抛物线C在第一、四象限分别交于A,B两点,则的值等于_解析:设A(x1,y1),B(x2,y2),由直线l的倾斜角为60,则直线l的方程为y0,即yxp,联立抛物线方程,消去y并整理,得12x220px3p20,则x1p,x2p,则3.答案:39已知抛物线C:y22px(p0),直线l:y(x1),l与C交于A,B两点,若|AB|,则p_解析:由消去y,得3x2(2p6)x30,设A(x1,y1)

    6、,B(x2,y2),由根与系数的关系,得x1x2,x1x21,所以|AB|22,所以p2.答案:210(2021浙江金华质检)若双曲线E:y21(a0)的离心率等于,直线ykx1与双曲线E的右支交于A,B两点(1)求k的取值范围;(2)若|AB|6,求k的值解:(1)由得故双曲线E的方程为x2y21.设A(x1,y1),B(x2,y2),由得(1k2)x22kx20.直线与双曲线的右支交于A,B两点,1k.(2)由得x1x2,x1x2,|AB|26,整理得28k455k2250,k2或k2.又1k,k.B级能力提升练11(2021河北衡水模拟)过原点的直线l与双曲线1有两个交点,则直线l的倾斜

    7、角的取值范围是()A.BC.D解析:选B.当直线l的斜率存在时,设直线l的方程ykx,将其代入双曲线的方程1,并整理得(3k21)x290.因为直线l与双曲线有两个交点,所以36(3k21)0,所以k2,解得k或k.设直线l的倾斜角为,由直线l的斜率ktan (0,且),可得;当直线l的斜率不存在,即时,直线l为y轴,显然与双曲线有两个交点故选B.12(2021江西赣州一检)已知双曲线1的左、右焦点分别是F1,F2,过F1的直线l与双曲线相交于A,B两点,则满足|AB|3的直线l有()A1条 B2条 C3条 D4条解析:选C.由双曲线的标准方程可知点F1的坐标为(,0),易得过F1且斜率不存在

    8、的直线为x,该直线与双曲线的交点为,(,),则|AB|3,又双曲线的两顶点分别为(,0),(,0),所以实轴长为2,23,结合图象,由双曲线的对称性可知满足条件的直线还有2条,故共有3条直线满足条件13已知焦点在x轴上的椭圆方程为1,随着a的增大,该椭圆的形状()A越接近于圆 B越扁C先接近于圆后越扁 D先越扁后接近于圆解析:选D.由题意知4aa21且a0,解得2a2,又e211,因此当a(2,1)时,e越来越大,当a(1,2)时,e越来越小所以椭圆形状变化为先扁后圆14(2021洛阳市第一次统一考试)已知双曲线E:1,直线l交双曲线于A,B两点,若线段AB的中点坐标为,则l的方程为_解析:依

    9、题意,设点A(x1,y1),B(x2,y2),则有,两式相减得,即.又线段AB的中点坐标是,因此x1x221,y1y2(1)22,即直线AB的斜率为,直线l的方程为y1,即2x8y70.答案:2x8y7015设点F为椭圆C:1(m0)的左焦点,直线yx被椭圆C截得弦长为.(1)求椭圆C的方程; (2)圆P:r2(r0)与椭圆C交于A,B两点,M为线段AB上任意一点,直线FM交椭圆C于P,Q两点,AB为圆P的直径,且直线FM的斜率大于1,求|PF|QF|的取值范围解:(1)由得x2y2,故22,解得m1,故椭圆C的方程为1.(2)设A(x1,y1),B(x2,y2),则又所以0.则(x1x2)(

    10、y1y2)0,故kAB1,则直线AB的方程为yx,即yx,代入椭圆C的方程并整理得7x28x0,则x10,x2,故直线FM的斜率k,),设FM:yk(x1),由得(34k2)x28k2x4k2120,设P(x3,y3),Q(x4,y4),则有x3x4,x3x4,又|PF|x31|,|QF|x41|,所以|PF|QF|(1k2)|x3x4(x3x4)1|(1k2)(1k2),因为k,所以,即|PF|QF|的取值范围是.C级素养加强练16(2021吉林长春质量检测)已知椭圆C的两个焦点为F1(1,0),F2(1,0),且经过点E.(1)求椭圆C的方程;(2)过点F1的直线l与椭圆C交于A,B两点(

    11、点A位于x轴上方),若,且23,求直线l的斜率k的取值范围解:(1)设椭圆C的方程为1(ab0),则由解得所以椭圆C的方程为1.(2)由题意得直线l的方程为yk(x1)(k0),联立方程,得整理得y2y90,1440,设A(x1,y1),B(x2,y2),则y1y2,y1y2,又,所以y1y2,所以y1y2(y1y2)2,则,2,因为23,所以2,即,且k0,解得0k.故直线l的斜率k的取值范围是17(2021甘肃兰州诊断考试)已知圆C:(x1)2y28,过D(1,0)且与圆C相切的动圆圆心为P.(1)求点P的轨迹E的方程; (2)设过点C的直线l1交曲线E于Q,S两点,过点D的直线l2交曲线

    12、E于R,T两点,且l1l2,垂足为W(Q,R,S,T为不同的四个点)设W(x0,y0),证明:y1;求四边形QRST的面积的最小值解:(1)设动圆半径为r,由于点D在圆C内,所以圆P与圆C内切,|PC|2r,|PD|r,|PC|PD|2|CD|2,由椭圆定义可知,点P的轨迹E是椭圆,其中a,c1,b1,故轨迹E的方程为y21.(2)由已知条件可知,垂足W在以CD为直径的圆周上,则有xy1,又Q,R,S,T为不同的四个点,所以y1.若l1或l2的斜率不存在,四边形QRST的面积为2.若两条直线的斜率都存在,设l1的斜率为k,则l1的方程为yk(x1),由方程组,得(2k21)x24k2x2k220,则|QS|2,同理得|RT|2,所以SQRST|QS|RT|,当且仅当2k21k22,即k1时等号成立综上所述,当k1时,四边形QRST的面积取得最小值.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:新高考数学复习知识点专题提升训练45-直线与圆锥曲线的综合问题.doc
    链接地址:https://www.163wenku.com/p-6039368.html
    刘殿云
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库