书签 分享 收藏 举报 版权申诉 / 25
上传文档赚钱

类型《概率论与数理统计》试题带答案(二).doc

  • 上传人(卖家):吉庆会
  • 文档编号:6038078
  • 上传时间:2023-05-23
  • 格式:DOC
  • 页数:25
  • 大小:1MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《概率论与数理统计》试题带答案(二).doc》由用户(吉庆会)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    概率论与数理统计 概率论 数理统计 试题 答案
    资源描述:

    1、概率论与数理统计试题带答案1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X345P0.10.30.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1) X的分布律;(2) X的分布函数并作图;(3).【解】故X的分布律为X012P(2) 当x0时,F(x)=P(Xx)=0当0x1时,F(x)=P(Xx)=P(X=0)= 当1x2时,F(x)=P(Xx)=P(X=0)+P(X=1)=当x2时,F(x)=P(Xx)=1故X的分布函数(

    2、3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.故X的分布律为X0123P0.0080.0960.3840.512分布函数4.(1) 设随机变量X的分布律为PX=k=,其中k=0,1,2,0为常数,试确定常数a.(2) 设随机变量X的分布律为PX=k=a/N, k=1,2,N,试确定常数a.【解】(1) 由分布律的性质知故 (2) 由分布律的性质知即 .5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1) 两人投中次数相等的概率

    3、;(2) 甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则Xb(3,0.6),Yb(3,0.7)(1) + (2) =0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则Xb(200,0.02),设机场需配备N条跑道,则有即 利用泊松近似查表得N9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概

    4、率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X表示出事故的次数,则Xb(1000,0.0001) 8.已知在五重贝努里试验中成功的次数X满足PX=1=PX=2,求概率PX=4.【解】设在每次试验中成功的概率为p,则故 所以 .9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1) 进行了5次独立试验,试求指示灯发出信号的概率;(2) 进行了7次独立试验,试求指示灯发出信号的概率.【解】(1) 设X表示5次独立试验中A发生的次数,则X6(5,0.3)(2) 令Y表示7次独立试验中A发生的次

    5、数,则Yb(7,0.3)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1) (2) 11.设PX=k=, k=0,1,2PY=m=, m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知PX1=,试求PY1.【解】因为,故.而 故得 即 从而 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中

    6、错误的册数,则Xb(2000,0.001).利用泊松近似计算,得 13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为250012=30000元.设1年中死亡人数为

    7、X,则Xb(2500,0.002),则所求概率为由于n很大,p很小,=np=5,故用泊松近似,有(2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000) 即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae-|x|, -x+,求:(1)A值;(2)P0X1; (3) F(x).【解】(1) 由得故 .(2) (3) 当x0时,当x0时, 故 16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为f(x)=求:(1) 在开始150小时内没有电子管损坏的概率;(2) 在这

    8、段时间内有一只电子管损坏的概率;(3) F(x).【解】(1) (2) (3) 当x100时F(x)=0当x100时 故 17.在区间0,a上任意投掷一个质点,以X表示这质点的坐标,设这质点落在0,a中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】 由题意知X0,a,密度函数为故当xa时,F(x)=1即分布函数18.设随机变量X在2,5上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.【解】XU2,5,即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,

    9、以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求PY1.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1) 若走第一条路,XN(40,102),则若走第二条路,XN(50,42),则+故走第二条路乘上火车的把握大些.(2) 若XN(40,

    10、102),则若XN(50,42),则 故走第一条路乘上火车的把握大些.21.设XN(3,22),(1) 求P2X5,P-4X10,PX2,PX3;(2) 确定c使PXc=PXc.【解】(1) (2) c=322.由某机器生产的螺栓长度(cm)XN(10.05,0.062),规定长度在10.050.12内为合格品,求一螺栓为不合格品的概率.【解】 23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,2),若要求P120X2000.8,允许最大不超过多少?【解】 故 24.设随机变量X分布函数为F(x)=(1) 求常数A,B;(2) 求PX2,PX3;(3) 求分布密度f(x).【解】(

    11、1)由得(2) (3) 25.设随机变量X的概率密度为f(x)=求X的分布函数F(x),并画出f(x)及F(x).【解】当x0时F(x)=0当0x1时 当1x0;(2) f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1) 由知故 即密度函数为 当x0时当x0时 故其分布函数(2) 由得 b=1即X的密度函数为当x0时F(x)=0当0x1时 当1x0时, 故 (2)当y1时当y1时 故 (3) 当y0时当y0时 故31.设随机变量XU(0,1),试求:(1) Y=eX的分布函数及密度函数;(2) Z=-2lnX的分布函数及密度函数.【解】(1) 故 当时当1ye时当ye时即分布函数

    12、故Y的密度函数为(2) 由P(0X0时, 即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y0时,当0y1时, 当y1时,故Y的密度函数为33.设随机变量X的分布函数如下:试填上(1),(2),(3)项.【解】由知填1。由右连续性知,故为0。从而亦为0。即34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X的分布律.【解】设Ai=第i枚骰子出现6点。(i=1,2),P(Ai)=.且A1与A2相互独立。再设C=每次抛掷出现6点。则 故抛掷次数X服从参数为的几何分布。35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9?【

    13、解】令X为0出现的次数,设数字序列中要包含n个数字,则Xb(n,0.1)即 得 n22即随机数字序列至少要有22个数字。36.已知F(x)=则F(x)是( )随机变量的分布函数.(A) 连续型; (B)离散型;(C) 非连续亦非离散型.【解】因为F(x)在(-,+)上单调不减右连续,且,所以F(x)是一个分布函数。但是F(x)在x=0处不连续,也不是阶梯状曲线,故F(x)是非连续亦非离散型随机变量的分布函数。选(C)37.设在区间a,b上,随机变量X的密度函数为f(x)=sinx,而在a,b外,f(x)=0,则区间 a,b等于( )(A) 0,/2; (B) 0,;(C) -/2,0; (D)

    14、 0,.【解】在上sinx0,且.故f(x)是密度函数。在上.故f(x)不是密度函数。在上,故f(x)不是密度函数。在上,当时,sinx0)=1,故01-e-2X1,即P(0Y1)=1当y0时,FY(y)=0当y1时,FY(y)=1当0y1时,即Y的密度函数为即YU(0,1)41.设随机变量X的密度函数为f(x)=若k使得PXk=2/3,求k的取值范围. (2000研考)【解】由P(Xk)=知P(Xk)=若k0,P(Xk)=0若0k1,P(Xk)= 当k=1时P(Xk)=若1k3时P(Xk)=若3k6,则P(X6,则P(Xk)=1故只有当1k3时满足P(Xk)=.42.设随机变量X的分布函数为

    15、F(x)=求X的概率分布. (1991研考)【解】由离散型随机变量X分布律与分布函数之间的关系,可知X的概率分布为X-113P0.40.40.243.设三次独立试验中,事件A出现的概率相等.若已知A至少出现一次的概率为19/27,求A在一次试验中出现的概率.【解】令X为三次独立试验中A出现的次数,若设P(A)=p,则Xb(3,p)由P(X1)=知P(X=0)=(1-p)3=故p=44.若随机变量X在(1,6)上服从均匀分布,则方程y2+Xy+1=0有实根的概率是多少? 【解】45.若随机变量XN(2,2),且P2X4=0.3,则PX0= . 【解】故 因此 46.假设一厂家生产的每台仪器,以概

    16、率0.7可以直接出厂;以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品不能出厂.现该厂新生产了n(n2)台仪器(假设各台仪器的生产过程相互独立).求(1) 全部能出厂的概率;(2) 其中恰好有两台不能出厂的概率;(3)其中至少有两台不能出厂的概率. 【解】设A=需进一步调试,B=仪器能出厂,则=能直接出厂,AB=经调试后能出厂由题意知B=AB,且令X为新生产的n台仪器中能出厂的台数,则X6(n,0.94),故 47.某地抽样调查结果表明,考生的外语成绩(百分制)近似服从正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分至84

    17、分之间的概率.【解】设X为考生的外语成绩,则XN(72,2)故 查表知 ,即=12从而XN(72,122)故 48.在电源电压不超过200V、200V240V和超过240V三种情形下,某种电子元件损坏的概率分别为0.1,0.001和0.2(假设电源电压X服从正态分布N(220,252).试求:(1) 该电子元件损坏的概率;(2) 该电子元件损坏时,电源电压在200240V的概率【解】设A1=电压不超过200V,A2=电压在200240V,A3=电压超过240V,B=元件损坏。由XN(220,252)知 由全概率公式有由贝叶斯公式有49.设随机变量X在区间(1,2)上服从均匀分布,试求随机变量Y

    18、=e2X的概率密度fY(y).【解】因为P(1X2)=1,故P(e2Ye4)=1当ye2时FY(y)=P(Yy)=0. 当e2y1时, 即 故 51.设随机变量X的密度函数为fX(x)=,求Y=1-的密度函数fY(y). 【解】 故 52.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为t的泊松分布.(1) 求相继两次故障之间时间间隔T的概率分布;(2) 求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.(1993研考)【解】(1) 当tt与N(t)=0等价,有即 即间隔时间T服从参数为的指数分布。(2) 53.设随机变量X的绝对值不大于1,PX=-1=1/8,PX=1=1/4.在事件-1X1出现的条件下,X在-1,1内任一子区间上取值的条件概率与该子区间长度成正比,试求X的分布函数F(x)=PXx. (1997研考)【解】显然当x-1时F(x)=0;而x1时F(x)=1由题知当-1x1时,此时 当x=-1时,故X的分布函数54. 设随机变量X服从正态分N(1,12),Y服从正态分布N(2,22),且P|X-1|P|Y-2|1,试比较1与2的大小. (2006研考)解: 依题意 ,则,.因为,即,所以有 ,即.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《概率论与数理统计》试题带答案(二).doc
    链接地址:https://www.163wenku.com/p-6038078.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库