6.2概率参考修改模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《6.2概率参考修改模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.2 概率 参考 修改 模板 范本
- 资源描述:
-
1、6.2 概率易错清单1. 在随机试验中,“一次取两个球”与“分两次各取一个球”,其结果一样吗?【例1】(2014广西模拟)袋中装有3个红球和1个白球,它们除颜色外都相同.随机从中摸出两球,两球都是红球的概率为.【解析】将“随机从中摸出两球”错误理解为“先随机从中摸出一个球,然后放回,再随机从中摸出一个球”,这样所有可能出现的结果就有16种(不妨把3个红球分别记为红1,红2,红3):红1红1,红1红2,红1红3,红1白,红2红1,红2红2,红2红3,红2白,红3红1,红3红2,红3红3,红3白,白红1,白红2,白红3,白白,这些结果出现的可能性是相等的,两球都是红球的概率为.事实上,“一次取两个
2、球”相当于“连续两次不放回”,所以所有可能出现的结果有12种:红1红2,红1红3,红1白,红2红1,红2红3,红2白,红3红1,红3红2,红3白,白红1,白红2,白红3,而不是16种.【答案】【误区纠错】将“一次取两个球”转化为“连续两次不放回”,然后用树状图或列表格法表示所有可能出现的结果,也是解决概率问题的一种方法.2. 如何正确理解“频率”与“概率”之间关系呢?【例2】(2014河北)某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线统计图,则符合这一结果的实验最有可能的是().A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B. 一副去掉大小王的普
3、通扑克牌洗匀后,从中任抽一张牌的花色是红桃C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D. 掷一个质地均匀的正六面体骰子,向上的面点数是4【解析】根据统计图可知,试验结果在0.17附近波动,即其概率P0.17.A. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀“的概率为,故此选项错误;B. 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是故此选项错误;C. 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球的概率为,故此选项错误;D. 掷一个质地均匀的正六面体骰子,向上的面点数是4的概率为,故此选项正确.【答案】D【误区
4、纠错】频率与概率是两个不同的概念,概率是伴随着随机事件客观存在的,只要有一个随机事件存在,那么这个随机事件的概率就一定存在;频率是通过试验得到的,随着试验次数变化而变化,但当试验的重复次数充分大时,频率在概率附近摆动,为了求出一个随机事件的概率,我们可以通过多次试验,用所得的频率来估计事件的概率.此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.3. 公平性的判断【例3】(2014贵州遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支
5、笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.【解析】(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表由概率公式求得小明获胜的概率即可判断是否公平.【答案】(1)列表,得:红1红2红3黑1黑2红1红1红2红1红3红1黑1红1黑2红2红2红1红2红3红2黑1红2黑2红3红3红1红3红2红3黑1红3黑2黑1黑1红1黑1红2黑1红3黑1黑2黑2黑2红1黑2红2黑2红3黑2黑1不公平,对小军有利.【误区纠错】生活中有许多类似以上的现象,有时我们
6、仅凭借个人有限的经验来判断是非,这往往得出错误的想法,运用概率的有关知识可以分析错误,还原一个真实的结论.名师点拨1. 掌握用列表或树状图求概率的求法.2. 概率在实际问题中的应用.提分策略1. 判断具体事件是确定事件(必然事件,不可能事件)还是随机事件.【例1】有两个事件,事件A: 367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是().A. 事件A,B都是随机事件B. 事件A,B都是必然事件C. 事件A是随机事件,事件B是必然事件D. 事件A是必然事件,事件B是随机事件【解析】事件A:一年最多有366天,所以367人中必有2人的生日相同,是必然事
7、件;事件B:抛掷一枚均匀的骰子,朝上的面的点数为1,2,3,4,5,6共6种情况,点数为偶数是随机事件.【答案】D2. 用列表法或画树状图求概率.当一次试验涉及多个因素(对象)时,常用列表法或画树状图法求出事件发生所有等可能性的结果,然后找出要求事件发生的结果数,根据概率的意义求其概率.【例2】小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两同学同时出“剪刀”的情况,再利用概率公式即可求得答案.画树状图,得:共有9种等可能的结果,两同学同时出“剪刀”的有1种情况,两同学同时出“剪刀”的概率是 .【答案】
展开阅读全文