第七章-时间序列分析模型课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第七章-时间序列分析模型课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七 时间 序列 分析 模型 课件
- 资源描述:
-
1、第七章时间序列分析模型本章结构n时间序列模型发展n基础阶段-平稳时间序列模型n核心阶段-非平稳时间序列模型n完善阶段-异方差条件下模型时间序列分析方法的发展过程时间序列分析方法的发展过程n基础阶段基础阶段n核心阶段核心阶段n完善阶段完善阶段基础阶段基础阶段nG.U.Yule n1927年,年,AR(自回归)(自回归)模型模型nG.T.Walkern1931年,年,MA(平均)(平均)模型模型n ARMA(自回归移动平均)(自回归移动平均)模型模型AR模型模型1 1、定义、定义:具有如下结构的模型称为:具有如下结构的模型称为p p阶自回归阶自回归模型模型,简记为,简记为AR(p)AR(p)特别地
2、、当特别地、当0 0=0=0时,称为时,称为中心化中心化AR(p)模型模型 tsEtsEVarExxxxstttptptpttt,0)x(,0)(,)(,0)(0ts222110 保证最高阶数为p保证残差白噪声保证t期的随机干扰与过去s期的序列值无关nAR模型的传递形式模型的传递形式 Green函数函数可得(过程略)可得(过程略)由由ttxB )(jtjjjpijtjiittGkBx 0t01x)(,记,记ttjjBGBG )(j0 其中ki(i=1,p)为常数,i为特征值且在单位圆内n框中式子称为框中式子称为AR模型的模型的传递形式传递形式,而系数,而系数Gj,j=1,2,称为称为Green
3、函数函数。nGreen函数性质函数性质:呈负指数下降,且:呈负指数下降,且(2)Green函数函数递推公式递推公式0|limj jGttttttBGBBGxxB )()()()(由由利用待定系数法解上述方程可得递推公式pkpkjGGGkkkjjkkj,0,2,1110其中,MA模型模型n1 1、定义、定义:具有如下结构的模型称为:具有如下结构的模型称为q q阶阶移动平均模型移动平均模型,简记为,简记为 MA(q)MA(q)n特别当特别当=0=0时,称为时,称为中心化中心化MA(q)MA(q)模型。模型。【注意注意】(1)MA模型总满足平稳条件模型总满足平稳条件;(;(2)AR(p)的假设条件不
4、满足时可以考虑用此模型。的假设条件不满足时可以考虑用此模型。(3)系数敏感性较)系数敏感性较AR模型差。模型差。tsEVarExstttqqtqtttt,0)(,)(0)(022211,用均值+过去时期的随机干扰或误差来预测自己nMA的逆函数的递推公式的逆函数的递推公式n对可逆的对可逆的MA模型,有模型,有n逆函数逆函数I(B)I(B)递推公式递推公式qkqkjIIIkkkjjkkj,0,2,1110其中,ttttttxxBIBxBIBx)()()()(ARMA模型模型1 1、定义定义 具有如下结构的模型称为具有如下结构的模型称为自回归移动自回归移动平均模型平均模型,简记为,简记为ARMA(p
5、,q)n特别当特别当0 0=0=0 时,称为时,称为中心化中心化ARMA(p,q)模型模型tsEVarExxxstttqpqtqttptptt,0)(,)(0)(00211110,用过去的自己,并考虑到随机干扰或误差序列来预测自己系数多项式系数多项式n引进延迟算子,引进延迟算子,中心化中心化ARMA(p,q)模型模型可简记为可简记为 其中其中p阶自回归系数多项式:阶自回归系数多项式:q阶移动平均系数多项式:阶移动平均系数多项式:ttBxB)()(qqBBBB2211)(ppBBBB2211)(3、传递形式与逆转形式、传递形式与逆转形式n传递形式传递形式n逆转形式逆转形式11)()(jjtjtt
6、tGBBx 1,110kGGGkjjjkjk 11)()(jjtjtttxIxxBB 1,110kIIIkjjjkjk Green函数:逆函数:可转化为无穷阶MA模型可转化为无穷阶AR模型 qj,0qj,j,0j,jjjj pp其中其中平稳时间序列建模步骤平稳时间序列建模步骤平稳非白噪声序列计算样本相关系数模型识别参数估计模型检验模型优化序列预测YesNo核心阶段核心阶段nG.E.P.Box和和 G.M.Jenkins n1970年,出版年,出版Time Series Analysis Forecasting and Control。n提出提出ARIMA(p,d,q)(差分自回归滑动平均差分自
7、回归滑动平均)模型)模型(BoxJenkins 模型)模型)-经典模型经典模型。(其中其中p为自回归项数,为自回归项数,q为滑动平均项数,为滑动平均项数,d为使之成为平稳为使之成为平稳序列所做的差分阶数序列所做的差分阶数)。nBoxJenkins模型模型实际上主要是运用于实际上主要是运用于单变量单变量、同方差同方差场合的场合的线性线性模型模型,存在局限性。,存在局限性。Cramer分解定理(1961)n任何一个时间序列 都可以分解为两部分的叠加:其中一部分是由多项式决定的确定性趋势成分,另一部分是平稳的零均值误差成分,即txtttx确定性影响随机性影响taB)(djjjt0确定性因素分解n现在
8、的因素分解n长期趋势波动n季节性变化n随机波动确定性时序分析的目的n克服其它因素的影响,单纯测度出某一个确定性因素对序列的影响n推断出各种确定性因素彼此之间的相互作用关系及它们对序列的综合影响趋势分析n目的n有些时间序列具有非常显著的趋势,我们分析的目的就是要找到序列中的这种趋势,并利用这种趋势对序列的发展作出合理的预测 n常用方法n趋势拟合法n平滑法趋势拟合法n趋势拟合法就是把时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型的方法 n分类n线性拟合n非线性拟合平滑法n平滑法是进行趋势分析和预测时常用的一种方法。它是利用修匀技术,削弱短期随机波动对序列的影响,使序列平
9、滑化,从而显示出长期趋势变化的规律 n常用平滑方法n移动平均法n指数平滑法移动平均法n基本思想n假定在一个比较短的时间间隔里,序列值之间的差异主要是由随机波动造成的。根据这种假定,我们可以用一定时间间隔内的平均值作为某一期的估计值 n分类nn期中心移动平均nn期移动平均指数平滑法n指数平滑方法的基本思想n在实际生活中,我们会发现对大多数随机事件而言,一般都是近期的结果对现在的影响会大些,远期的结果对现在的影响会小些。为了更好地反映这种影响作用,我们将考虑到时间间隔对事件发展的影响,各期权重随时间间隔的增大而呈指数衰减。这就是指数平滑法的基本思想 n分类n简单指数平滑nHolt两参数指数平滑季节
展开阅读全文