高考数学中解排列组合问题的17种策略课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学中解排列组合问题的17种策略课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 排列组合 问题 17 策略 课件 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、王振涛王振涛2、合理分类和准确分步、合理分类和准确分步5、定序问题、定序问题6、分房问题、分房问题7、环排、环排、10、先选后排问题、先选后排问题9 9、平均分组问题、平均分组问题11、构造模型策略、构造模型策略8、实验法(枚举法)、实验法(枚举法)13、其它特殊方法、其它特殊方法排列组合应用题解法综述排列组合应用题解法综述(目录)(目录)基基本本原原理理组合组合排列排列排列数公式排列数公式组合数公式组合数公式组合数性质组合数性质应应用用问问题题 知识结构网络图:知识结构网络图:返回目录返回目录 名称名称内容内容分类原理分类原理分步原理分步原理定定 义义相同相同点点不同不同点点两个原理的区别与
2、联系:两个原理的区别与联系:做一件事或完成一项工作的方法数做一件事或完成一项工作的方法数直接(直接(分类分类)完成)完成间接(间接(分步骤分步骤)完成)完成做一件事,完成它可以有做一件事,完成它可以有n类办法,类办法,第一类办法中有第一类办法中有m1种不同的方法,种不同的方法,第二类办法中有第二类办法中有m2种不同的方法种不同的方法,第第n类办法中有类办法中有mn种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N=m1+m2+m3+mn 种不同的方法种不同的方法做一件事,完成它可以有做一件事,完成它可以有n个步骤,个步骤,做第一步中有做第一步中有m1种不同的方法,种不同的方法
3、,做第二步中有做第二步中有m2种不同的方法种不同的方法,做第做第n步中有步中有mn种不同的方法,种不同的方法,那么完成这件事共有那么完成这件事共有 N=m1m2m3mn 种不同的方法种不同的方法.回目录回目录1.1.排列和组合的区别和联系:排列和组合的区别和联系:名名 称称排排 列列组组 合合定义定义种数种数符号符号计算计算公式公式关系关系性质性质 ,mnAmnC(1)(1)mnAn nnm!()!mnnAnm!0!1nnAn!)1()1(mmnnnCmn )!(!mnmnCmn 10 nCmmmnnmACAmnnmnCC 11 mnmnmnCCC从从n个不同元素中取出个不同元素中取出m个元个
4、元素,素,按一定的顺序按一定的顺序排成一列排成一列从从n个不同元素中取出个不同元素中取出m个元个元素,素,把它并成把它并成一组一组所有排列的的个数所有排列的的个数所有组合的个数所有组合的个数11mmnnAnA回目录回目录判断下列问题是组合问题还是排列问题判断下列问题是组合问题还是排列问题?(1)设集合设集合A=a,b,c,d,e,则集合,则集合A的含有的含有3个元素的子集有多少个个元素的子集有多少个?(2)某铁路线上有某铁路线上有5个车站,则这条铁路线上个车站,则这条铁路线上共需准备多少种车票共需准备多少种车票?有多少种不同的火车票价?有多少种不同的火车票价?组合问题组合问题排列问题排列问题(
5、3)10名同学分成人数相同的数学和名同学分成人数相同的数学和英语两个学习小组,共有多少种分法英语两个学习小组,共有多少种分法?组合问题组合问题(4)10人聚会,见面后每两人之间要人聚会,见面后每两人之间要握手相互问候,共需握手多少次握手相互问候,共需握手多少次?组合问题组合问题(5)从从4个风景点中选出个风景点中选出2个安排游览个安排游览,有有多少种不同的方法多少种不同的方法?组合问题组合问题(6)从从4个风景点中选出个风景点中选出2个个,并确定这并确定这2个风景点个风景点的游览顺序的游览顺序,有多少种不同的方法有多少种不同的方法?排列问题排列问题组合问题组合问题回目录回目录合理分类和准确分步
6、合理分类和准确分步 解排列(或)组合问题,应按元素的性质解排列(或)组合问题,应按元素的性质进行分类,分类标准明确,不重不漏;进行分类,分类标准明确,不重不漏;按按事事情的发生的连续过程分步,做到分步层次清情的发生的连续过程分步,做到分步层次清楚楚.回目录回目录合理分类与分步策略例例.在一次演唱会上共在一次演唱会上共1010名演员名演员,其中其中8 8人能唱人能唱歌歌,5,5人会跳舞人会跳舞,现要演出一个现要演出一个2 2人唱歌人唱歌2 2人伴舞的人伴舞的节目节目,有多少选派方法有多少选派方法?解:1010演员中有演员中有5 5人只会唱歌,人只会唱歌,2 2人只会跳舞人只会跳舞 3 3人为全能
7、演员。人为全能演员。以只会唱歌的以只会唱歌的5 5人是否人是否选上唱歌人员为标准进行研究选上唱歌人员为标准进行研究 只会唱只会唱的的5 5人中没有人选上唱歌人员共有人中没有人选上唱歌人员共有_种种,只会唱的只会唱的5 5人中只有人中只有1 1人选上唱歌人人选上唱歌人员员_种种,只会唱的只会唱的5 5人中只有人中只有2 2人人选上唱歌人员有选上唱歌人员有_种,由分类计数种,由分类计数原理共有原理共有_种。种。2233CC112534CCC2255CC2233C C112534C C C2255C C+回目录回目录元素相同问题隔板策略元素相同问题隔板策略应用背景:相同元素的名额分配问题应用背景:相
8、同元素的名额分配问题 不定方程的正整数解问题不定方程的正整数解问题隔板法的使用特征:隔板法的使用特征:相同的元素分成若干部分,每部分至少一个相同的元素分成若干部分,每部分至少一个元素相同问题隔板策略例例.有有1010个运动员名额,在分给个运动员名额,在分给7 7个班,每个班,每班至少一个班至少一个,有多少种分配方案?有多少种分配方案?解:因为解:因为10个名额没有差别,把它们排成个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一种插板方法
9、对应一种分法班级,每一种插板方法对应一种分法共有共有_种分法。种分法。一班二班三班四班五班六班七班69C11mnC回目录回目录例例 高二年级高二年级8 8个班个班,组织一个组织一个1212个人的年级学生分会个人的年级学生分会,每班要求至少每班要求至少1 1人人,名额分配方案有多少种名额分配方案有多少种?解解 此题可以转化为此题可以转化为:将将1212个相同的白球分成个相同的白球分成8 8份份,有有多少种不同的分法问题多少种不同的分法问题,因此须把这因此须把这1212个白球排成一个白球排成一排排,在在1111个空档中放上个空档中放上7 7个相同的隔板个相同的隔板,每个空档最多每个空档最多放一个放
10、一个,即可将白球分成即可将白球分成8 8份份,显然有显然有 种不同的放法种不同的放法,所以名额分配方案有所以名额分配方案有 种种.711C711C结论结论 转化法转化法:对于某些较复杂的、或较抽象的排列组对于某些较复杂的、或较抽象的排列组合问题,可以利用转化思想合问题,可以利用转化思想,将其化归为简单的、具体将其化归为简单的、具体的问题来求解的问题来求解.分析分析 此题若直接去考虑的话此题若直接去考虑的话,就会比较复杂就会比较复杂.但如果但如果我们将其转换为等价的其他问题我们将其转换为等价的其他问题,就会显得比较清楚就会显得比较清楚,方法简单方法简单,结果容易理解结果容易理解.回目录回目录练练
11、 习习(1 1)将)将1010个学生干部的培训指标分配给个学生干部的培训指标分配给7 7个不同个不同的班级,每班至少分到一个名额,不同的分配方的班级,每班至少分到一个名额,不同的分配方案共有案共有 ()种。)种。6984C(2)不定方程)不定方程 的正整数解的正整数解共有(共有()组)组123710 xxxx6984C回目录回目录练习题1.1.1010个相同的球装个相同的球装5 5个盒中个盒中,每盒至少一每盒至少一 有多少装法?有多少装法?2.x+y+z+w=1002.x+y+z+w=100求这个方程组的自然数解求这个方程组的自然数解 的组数的组数3103C49C回目录回目录小结:小结:把把n
12、 n个相同元素分成个相同元素分成m m份每份份每份,至至少少1 1个元素个元素,问有多少种不同分法的问题问有多少种不同分法的问题可以采用可以采用“隔板法隔板法”得出共有得出共有 种种.11mnC回目录回目录平均分组问题除法策略平均分组问题除法策略例12.6本不同的书平均分成本不同的书平均分成3堆堆,每堆每堆2本共有本共有 多少分法?多少分法?解解:分三步取书得分三步取书得 种方法种方法,但这里出现但这里出现 重复计数的现象重复计数的现象,不妨记不妨记6本书为本书为ABCDEF 若第一步取若第一步取AB,第二步取第二步取CD,第三步取第三步取EF 该分法记为该分法记为(AB,CD,EF),则则
13、中还有中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有共有 种取法种取法,而而 这些分法仅是这些分法仅是(AB,CD,EF)一种分法一种分法,故共故共 有有 种分法。种分法。222642CCC222642CCC33A222642CCC33A平均分成的组平均分成的组,不管它们的顺序如何不管它们的顺序如何,都是一都是一种情况种情况,所以分组后要一定要除以所以分组后要一定要除以 (n为均为均分的组数分的组数)避免重复计数。避免重复计数。nnA回目录回目录1 将将13个球队分成个球队分成3组组,一组一组5个队个队,其它两组其它两组4
14、 个队个队,有多少分法?有多少分法?2.10名学生分成名学生分成3组组,其中一组其中一组4人人,另两组另两组3人人 但正副班长不能分在同一组但正副班长不能分在同一组,有多少种不同有多少种不同 的分组方法的分组方法(1540)544138422C C CA3.3.某校高二年级共有六个班级,现从外地转某校高二年级共有六个班级,现从外地转 入入4 4名学生,要安排到该年级的两个班级且每名学生,要安排到该年级的两个班级且每班安排班安排2 2名,则不同的安排方案种数为名,则不同的安排方案种数为_ 2226422290ACC A回目录回目录分清排列、组合、等分的算法区别分清排列、组合、等分的算法区别例例
15、(1)(1)今有今有1010件不同奖品件不同奖品,从中选从中选6 6件分给甲一件分给甲一件件,乙二件和丙三件乙二件和丙三件,有多少种分法有多少种分法?(2)(2)今有今有1010件不同奖品件不同奖品,从中选从中选6 6件分给三人件分给三人,其中其中1 1人一件人一件1 1人二件人二件1 1人三件人三件,有多少种分法有多少种分法?(3)(3)今有今有1010件不同奖品件不同奖品,从中选从中选6 6件分成三份件分成三份,每份每份2 2件件,有多少种分法有多少种分法?解:(1)123109712600CCC(2)12331097375600CCCA(3)336222110642()3150ACCCC
16、)/(332628210ACCC回目录回目录练习练习 (1)(1)今有今有1010件不同奖品件不同奖品,从中选从中选6 6件分成三份件分成三份,二二份各份各1 1件件,另一份另一份4 4件件,有多少种分法有多少种分法?(2)(2)今有今有1010件不同奖品件不同奖品,从中选从中选6 6件分给甲乙丙三件分给甲乙丙三人人,每人二件有多少种分法每人二件有多少种分法?解:(1)(2)641111062123150CCCC62221064218900CCCC)(2628210CCC回目录回目录小结:小结:排列与组合的区别在于元素是排列与组合的区别在于元素是否有序否有序;m;m等分的组合问题是非等分情等分
17、的组合问题是非等分情况的况的;而元素相同时又要另行考虑而元素相同时又要另行考虑.回目录回目录构造模型策略构造模型策略例例.马路上有编号为马路上有编号为1,2,3,4,5,6,7,8,91,2,3,4,5,6,7,8,9的的 九只路灯九只路灯,现要关掉其中的现要关掉其中的3 3盏盏,但不能关但不能关 掉相邻的掉相邻的2 2盏或盏或3 3盏盏,也不能关掉两端的也不能关掉两端的2 2 盏盏,求满足条件的关灯方法有多少种?求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在解:把此问题当作一个排队模型在6 6盏盏 亮灯的亮灯的5 5个空隙中插入个空隙中插入3 3个不亮的灯个不亮的灯 有有_ _
18、 种种35C一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决回目录回目录练习题某排共有某排共有1010个座位,若个座位,若4 4人就坐,每人左右人就坐,每人左右两边都有空位,那么不同的坐法有多少种?两边都有空位,那么不同的坐法有多少种?120回目录回目录例例.有有5 5个不同的小球个不同的小球,装入装入4 4个不同的盒内个不同的盒内,每盒至少装一个球每盒至少装一个球,共有多少不同的装共有多少不同的装 法法.解解:第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(
19、包含一个复合包含一个复合 元素元素)装入装入4 4个不同的盒内有个不同的盒内有_种方法种方法.25C44A根据分步计数原理装球的方法共有根据分步计数原理装球的方法共有_25C44A回目录回目录练习题一个班有一个班有6 6名战士名战士,其中正副班长各其中正副班长各1 1人人现从中选现从中选4 4人完成四种不同的任务人完成四种不同的任务,每人每人完成一种任务完成一种任务,且正副班长有且只有且正副班长有且只有1 1人人参加参加,则不同的选法有则不同的选法有_ _ 种种192192回目录回目录3 名医生和名医生和 6 名护士被分配到名护士被分配到 3 所所学校为学生体检学校为学生体检,每校分配每校分配
20、 1 名医生名医生和和 2 名护士名护士,不同的分配方法共有多不同的分配方法共有多少种少种?先选后排问题的处理方法先选后排问题的处理方法 解法一:先组队后分校解法一:先组队后分校(先分堆后分配)(先分堆后分配)540332426PCC回目录回目录 解法二:依次确定到第一、解法二:依次确定到第一、第二、第三所学校去的医生和第二、第三所学校去的医生和护士护士.5401)()(24122613CCCC回目录回目录 为支援西部开发为支援西部开发,有有3名教师去银川市名教师去银川市三所学校任教三所学校任教,每校分配每校分配1人人,不同的分不同的分配方法共有配方法共有_种种(用数字作答用数字作答).练习练
展开阅读全文