线性代数Linear讲解课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线性代数Linear讲解课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 Linear 讲解 课件
- 资源描述:
-
1、2023/5/221線性代數Linear Algebra東吳大學數學系 葉麗娜2023/5/222第七 章 Linear Transformations(線性轉換)n7.1 The idea of a linear Transformationn7.2 The Matrix of a Linear Transformationn7.3 Change of Basisn7.4 Diagonalization and the Pseudoinverse2023/5/2237.1 The idea of a linear Transformationn定義:qA transformation T a
2、ssigns an output T(v)in output space W to each input vector v in input space V.The transformation is linear if it meets these requirements for all v and w:(a)T(v+w)=T(v)+T(w)(b)T(cv)=c T(v)for all c in Rqlinearity:T(cv+dw)=c T(v)+d T(w)n依據”linear”的性質 T(0)=0n例子:矩陣乘法運算T(v)=Av就是一個線性轉換n例子:T(v)=v+u0 不是一個
3、線性轉換,除非u0=0 T(v)=v 稱為“identity transformation”2023/5/2247.1 The idea of a linear Transformationn例子:T(v)=Av+u0”linear-plus-shift transformation”不是一個線性轉換n例題1:假設a=(1,3,4),T(v)=a v(inner product)是一個線性轉換。q解:令 A=1 3 4,則 T(v)=a v=A vn例題2:The length T(v)=|v|不是一個線性轉換。q解:因為|v+w|v|+|w|,而且 T(-v)=|-v|=|-v|-|v|n例
4、題3:T(v)=旋轉v向量30o(xy平面)是一個線性轉換。q解:我們將整個平面旋轉30o,會使得這個轉換滿足線性關係 。在這裡不用提及矩陣。2023/5/2257.1 The idea of a linear Transformation:Lines to Lines,Triangles to Trianglesn下圖說明input線上的點對應到output線上的點,其間保持等距關係。1111 ()()()2222TTTuvwuvw2023/5/2267.1 The idea of a linear Transformationq註:”transformation”有自己定義使用的語言,雖然
5、可能沒有用到矩陣,但相同的觀念依然可使用。qRange of T=set of all outputs T(v):corresponds to column space qKernel of T=set of all inputs for which T(v)=0:corresponds to nullspaceqThe range is in the output space WqThe kernel is in the input space VnThe rule of linearity extends to combinations of three vectors or n vect
6、ors.n例題4:T(v)=投影v向量(in R3)到 xy平面。q解:The range is the xy plane,the kernel is the z-axis.Let v=(v1,v2,v3),then T(v)=(v1,v2,0)=0,hence v1=0=v2,the transformation(projection)is linear.1 1221122.()()().()nnnncccTcTc Tc Tuvvvuvvv2023/5/2277.1 The idea of a linear Transformationn例題5:T(v)=投影v向量(in R3)到 z=1平
7、面。q解:Let v=(v1,v2,v3),then T(v)=(v1,v2,1),T(cv)=(cv1,cv2,1)cv hence the transformation is not linear.n例題6:假設A是可逆矩陣,而且T(v)=Av則存 在逆線性轉換(inverse transform)T-1,使得T-1(T(v)=v。q解:Let T-1(w)=A-1w,for all w in the range of T then T-1 is linear and T-1(T(v)=T-1(w)=A-1w=A-1Av=v,for w=T(v)=Av 2023/5/2287.1 The
8、idea of a linear Transformation:Linear Transformations of the planen假設平面上一間”房子”有11個頂點 vi=(xi,yi),i=1,11.我們做一個線性轉換,將這11個頂點對應到頂點,而且他們之間的直線對應到直線,來產生新的”房子”。n觀察不同的矩陣所產生的效果.6 6 7 0 7 6 6 3 3 0 0 67 2 1 8 1 2 7 7 2 2 7 7H2023/5/2297.1 The idea of a linear Transformation:Linear Transformations of the plane6
9、 6 7 0 7 6 6 3 3 0 0 67 2 1 8 1 2 7 7 2 2 7 7H2023/5/22107.1 The idea of a linear Transformation:worked examplesn7.1B Nonlinear transformationsqFor x in R(實數),下列T都不是線性 T1(x)=x2 ,T2(x)=x3 ,T3(x)=x+9 T4(x)=ex ,T5(x)=1/x ,x 0qHowever,T2 ,T3 ,T5 are invertible.2023/5/22117.1 The idea of a linear Transfo
10、rmationn問題:每個線性轉換都可經由矩陣產生嗎?q解:如果線性轉換的定義域(domain)V=Rn,值域(range)W=Rm,則每個m by n的矩陣會產生 一個線性轉換。T(v)=Av 反之,每個線性轉換都隱含一個矩陣嗎?這就是我們要問的問題:例如:”projection”,“rotation”,解:是的(V,W基底向量之對應,以後說明)。所以 一般線性代數可以不必從矩陣開始講起。2023/5/22127.2 The matrix of a linear transformationn本節中說明:每一個線性轉換都有對應之矩陣q例如:v1=(1,0),v2=(0,1),w1=(1,0,
11、0),w2=(0,0,1),w3=(0,0,1)假如 T(v1)=(2,3,4),T(v2)=(5,5,5)則每個向量v=(c1,c2)in R2 T(v)=T(c1 v1+c2 v2)=c1 T(v1)+c2 T(v2)=c1(2,3,4)+c2(5,5,5)=Av 其中nKey idea:當我們知道基底向量v1,v2,vn的對應值T(v1),T(v2),T(vn),則每個向量v的T(v)也可確定 122 53 5 ,4 5ccAvStandard basisA is a standard matrix for T2023/5/22137.2 The matrix of a linear t
12、ransformationnSuppose v=c1 v1+c2 v2+cn vn .Then linearity requires T(v)=c1 T(v1)+cn T(vn)q例題:input space V=cubic polynomials(degree3)則 1,x,x2,x3 是一組基底,令 ,依照微分的法則,T是一個線性轉換 T(v)=T(a+bx+cx2+dx3)=aT(1)+bT(x)+cT(x2)+dT(x3)=b+2c x+3d x2假如Output space W=cubic polynomials,則 range(T)=quadratic polynomials(de
13、gree2),a subspace of W。假如Output space W=quadratic polynomials,則 range(T)=W。qkernel(T)contains v with T(v)=0,kernel(T)=constant polynomials()dTdxvv2023/5/22147.2 The matrix of a linear transformationn(續上頁)q假如 input space V=cubics,W=quadratics ,則dim(V)=4,dim(W)=3,對應於 之矩陣 T(v)=T(a+bx+cx2+dx3)=aT(1)+bT(
14、x)+cT(x2)+dT(x3)=b+2c x+3d x2,以1,x,x2基底組合之係數=A v 即 T(v)=Av,當v寫為向量形式 v=(a,b,c,d)n(dimension of range of T)+(dimension of Kernel of T)=dimension of Vq3+1=4()dTdxvv230 1 0 00 0 2 0(1)()()()0 0 0 3TT x T xT xAA(3 by 4)is a standard matrix for T2023/5/22157.2 The matrix of a linear transformationn例題:考慮下列
15、的積分(微分的逆向)令 w1=1,w2=x,w3=x2,T-1 將 對應到則T-1是線性轉換而且T-1(w)使得 W=quadratics對回到V=cubics,其所應之矩陣(4 by 3)表示如右:(dimension of range of T-1)+(dimension of Kernel of T-1)=dimension of W remark:3+0=3 (Kernel of T-1 contains only 0 vector)2BCxDxw223000111 ,23xxxdxxx dxxx dxx12311()23TBxCxDxw112211330 0 0 01 0 0 0 0
16、0 0 BBCCDD2023/5/22167.2 The matrix of a linear transformation:Matrices for the Derivative and Integraln(續上頁)對應於微分與積分線性轉換(T/T-1)的矩陣A/A-1滿足n因為A不是方陣所以僅有單邊的反矩陣(one-sided inverse)n積分再微分回到自己,但是微分再積分會喪失常數項qTT-1(w)=w,however T-1T(v)vnT-1T(1)=integral of zero function=0qA-1A的第一行全為零。110 0 0 01 0 00 1 0 00 1
17、0 ,0 0 1 00 0 10 0 0 1butAAA A2023/5/22177.2 The matrix of a linear transformation:Construction of the Matrixn本節主題:針對每個線性轉換T 建立對應的矩陣Aq假設T是從V(n-dimensional)對到W(m-dimensional)的線性轉換,v1,v2,vn與w1,w2,wm分別為V與W的一組基底,則A為m by n矩陣。A的第一行是T(v1):T(v1)=a11 w1+a21 w2+am1 wm是W基底的組合 v1對應到T(v1),針對w1,w2,wn 這組基底,T(v1)之係
18、數可視為A矩陣乘上向量(1,0,0)n7A Each linear transformation T from V to W is represented by a matrix A(after the bases are chosen for V and W).The jth column of A is found by applying T to the jth basis vector vj:T(vj)=a1j w1+a2j w2+amj wm=combination of basis vectors of W2023/5/22187.2 The matrix of a linear
19、transformation:Construction of the Matrixn當每個基底向量vj的對應值T(vj)j=1,2,n確定後,一般向量v=(c1,c2,cn)的對應值T(v)可寫成 T(v)=c1T(v1)+c2T(v2)+cnT(vn)=T(v1)T(vn)v針對以w1,w2,wn為基底的線性組合,T(v)之係數=Avn同樣的線性轉換T選擇不同的基底,其對應之矩陣A也不同q例如:V=cubics(多項式 degree 3)我們變更基底的順序為 x,x2,x3,1,而W=quadratics不變,則新矩陣如下:1 0 0 00 2 0 00 0 3 0newAMatrix fo
20、r the derivative T when the basis of V change to x,x2,x3,12023/5/22197.2 The matrix of a linear transformation:Construction of the Matrixn例題:考慮V=W=R2,線性轉換T(v)=v,要找出T所對應之矩陣。這個矩陣隨基底選擇而變。q解:如果選擇標準基底 v1=(1,0),v2=(0,1)且 w1=(1,0),w2=(0,1)則T(v1)=v1=w1=1w1+0 w2 ,T(v2)=v2=w2=0w1+1w2。矩陣為單位矩陣(ii)如果選擇基底v1=(-1,0
21、),v2=(0,1)且 w1,w2不變 則T(v1)=v1=-w1=-w1+0 w2 ,T(v2)=v2=w2=0w1+1w2。矩陣A變成為(iii)如果選擇基底v1,v2不變且 w1=(-1,0),w2=(0,-1)則T(v1)=v1=-w1=-w1+0 w2 ,T(v2)=v2=-w2=0w1-w2。矩陣A變成為1 0 0 1A1 00 1A1 0 0 1A2023/5/22207.2 The matrix of a linear transformation:Construction of the Matrixn例題:考慮V=W=R2,T旋轉平面的向量一個角度,要找出對應之旋轉矩陣。這個
22、矩陣會隨基底選擇而變。q解:如果選擇標準基底 v1=(1,0),v2=(0,1)且w1=v1,w2=v2 則 T(v1)=(cos,sin)=cosw1+sinw2 T(v2)=(-sin,cos)=-sinw1+cosw2 cos sinsin cosAStandard matrix for T2023/5/22217.2 The matrix of a linear transformation:Construction of the Matrixn例題:考慮V=W=R2,線性轉換T投影平面的向量到45o的直線,要找出2個不同基底T所對應之投影矩陣。q解:(i)如果選擇標準基底 v1=(1
23、,0),v2=(0,1)且w1=v1,w2=v2,則 同樣 T(v2)=T(v1)=1/2(w1+w2),對應之矩陣(ii)如果選擇基底 v1=(1,1),v2=(-1,1)且w1=v1,w2=v2,則 T(v1)=(1,1)=w1,T(v2)=0=0 w1+0 w2 對應之矩陣T11T11 211()=,11 212T v uvuuu u1 2 1 21 2 1 2A1 00 0ARemark:T2=T,A2=A v1v2u2023/5/22227.2 The matrix of a linear transformation:Products AB Match Transformation
24、s TSnS是從U到V的線性轉換,u1,u2,up與v1,v2,vn 分別為U與V的一組基底,B為n by p矩陣。T是從V到W的線性轉換,v1,v2,vn與w1,w2,wm 分別為V與W的一組基底,A為m by n矩陣。n7B(Multiplication)The linear transformation TS starts with any vector u in U,goes to S(u)in and then to T(S(u)in W.The matrix AB starts any x in Rp,goes to Bn in Rn and then to ABx in Rm.T
25、he matrix AB correctly represents TS:TS:U V W AB:(m by n)(n by p)=(m by p)qu=x1u1+x2u2+xpup ,x=(x1,x2,xp)2023/5/22237.2 The matrix of a linear transformation:Products AB Match Transformations TSqTS:U V W AB:(m by n)(n by p)=(m by p)qu=x1u1+x2u2+xpup ,x=(x1,x2,xp)qTS(u)=T(S(u)=T(x1S(u1)+xpS(up)=T(x1(
展开阅读全文