书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型武昌区2020届高中毕业生六月文科数学.pdf

  • 上传人(卖家):青草浅笑
  • 文档编号:601215
  • 上传时间:2020-06-26
  • 格式:PDF
  • 页数:5
  • 大小:330.10KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《武昌区2020届高中毕业生六月文科数学.pdf》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    武昌 2020 高中毕业生 六月 文科 数学 下载 _其他_数学_高中
    资源描述:

    1、 武昌区2020届高中毕业生六月供题 文科数学试题 一、选择题:本题共 一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1. 已知集合 xAZ32|xx或,则ACZ=() A.-1,0,1,2B.-1C. -1,0D.0,1,2 2.设复数z满足i 48 zz,则z的虚部为() A.3B.4C.i 4D.3i 3.已知命题 np:N,2, 2n n 则 为p () A.,2, 2n nNnB.,2, 2n nNn C.,2, 2n nNnD.,2

    2、, 2n nNn 4.已知正项等差数列 n a的前n项和为 n S,且 14 10aS ,则 3 4 a a () A. 2B. 3 4 C. 4 3 D. 2 1 5.已知3 2sincos2 2cos1 ,则 sin1 cos 的值为() A. 3 3 -B.3-C. 3 3 D.3 6.比较大小:2log3a, 1 . 0 eb, 2 1 ln ec() A.bcaB.bacC.abcD.cba 7.如图在ABC 中,DBAD3,P为CD上一点,且满足ABACmAP 2 1 则实数m的值为() A. 2 1 B. 3 1 C. 4 1 D. 5 1 8.对),(1x, “ x xe”是“

    3、e”的 A.充分必要条件B.既不充分也不必要条件 C.充分不必要条件D.必要不充分条件 9.某小区为了调查本小区业主对物业服务满意度的真实情况,对本小区业主进行了调查,调 查中问了两个问题 1:你的手机尾号是不是奇数?问题 2:你是否满意物业的服务?调查 者设计了一个随机化装置,其中装有大小、形状和质量完全相同的白球和红球,每个被调查 P A D B C 者随机从装置中摸到红球和白球的可能性相同,其中摸到白球的业主回答第一个问题,摸到 红球的业主回答第二个问题,回答“是”的人往一个盒子中放一个小石子,回答“否”的人什么 都不要做.由于问题的答案只有“是”和“否”,而且回答的是哪个问题别人并不知

    4、道,因此被调 查者可以毫无顾虑地给出符合实际情况的答案.已知某小区 80 名业主参加了问卷,且有 47 名业主回答了“是”,由此估计本小区对物业服务满意的百分比大约为() A. 85%B. 75%C.63.5%D.67.5% 10.已知双曲线)0( 1 1 2 2 2 2 a a y a x 的右焦点为F,)0 ,( aA ,), 0(bB,过FBA,三点作圆P, 其中圆心P的坐标为),(nm,当0 nm时,双曲线离心率的取值范围为() A.),(21B.),(31C.),(2D.),(3 11.已知函数) 12)(23()( 23 x axaxxf至多有 2 个零点,则实数 a 的取值范围是

    5、() A.), 1(B.), 1 ()0 , 1(C.), 1 ( D.), 1 (0 , 1( 12.运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个 平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等. .构造一个底 面半径和高都与球的半径相等的圆柱,与半球(如图)放置在同一平面上,然后在圆柱 内挖去一个以圆柱下底面圆心为顶点, 圆柱上底面为底面的圆锥后得到一新几何体 (如图 ) ,用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由 此可证明新几何体与半球体积相等。现将椭圆1 169 22 yx 绕 y 轴旋转一周后得一橄榄

    6、状 的几何体(如图) ,类比上述方法,运用祖暅原理可求得其体积等于() 图图图 A.64B.48C.16D.32 二、填空题二、填空题:本题共本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分。分。 13.某人午觉醒来,发现表停了,他打开了收音机,想听电台整点报时,则他等待的时间不 多于 10 分钟的概率为. 14.在ABC 中,角 A,B,C 的对边分别为 a,b,c,若4, 2cab,则ABC 的面积的最大值 为. 15.在正方体 1111 DCBAABCD 中,M为棱 1 AA的中点, 且29MC, 点P为底面 1111 DCBA 所在平面上一点,若直线PCPA,与底面 1

    7、111 DCBA所成的角相等,则动点P的轨迹所围成 的几何图形的面积为. 16.已知 N,若函数)cos(5)(xxf有一条对称轴为 4 x,且函数)(xfy 在 ),( 4 3 上不单调,则的最小值为. 三三、解答题解答题:共共 70 分分。解答题应写出文字说明解答题应写出文字说明、证明过程或演算步骤证明过程或演算步骤。第第 1721 题为必考题为必考 题,每个试题考生都必须作答。第题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。题为选考题,考生根据要求作答。 (一)必考题:共(一)必考题:共 60 分分 17.(本题满分 12 分) 已知等比数列 n a中,39,

    8、13 31 Sa,其中 321 ,2 ,3aaa成等差数列. (1)求数列 n a的通项公式. (2) 11 () 1(,log 1 3 nn n nnn bb cab,记?的前n项和为?,求?的前 2020 项和 2020 T. 18.(本题满分 12 分) 如 图 , 在 四 棱 柱 1111 DCBAABCD 中 , 四 边 形ABCD是 边 长 等 于 2 的 菱 形 , ABCDAAADC平面 1 ,120,EO,分别是CA1,AB的中点,AC交DE于点H,点F为 HC的中点. (1)求证:EDAOF 1 /平面 (2)若OF与平面ABCD所成的角为,60求三棱锥ADEA 1 的表面

    9、积 19.(本题满分 12 分) 政府工作报告指出,2019 年我国深入实施创新驱动发展战略,创新能力和效率进一步提升; 2020 年要提升科技支撑能力,健全以企业为主体的产学研一体化创新机制.某企业为了提升 行业核心竞争力,逐渐加大了科技投入;该企业连续 5 年来的科技投入 x(百万元)与收益 y(百万元)的数据统计如下: 科技投入 x12345 收益 y4050607090 (1) 请根据表中数据,建立 y 关于 x 的线性回归方程. (2) 按照()中模型,已知科技投入 8 百万元时收益为 140 百万元,求残差?(残差? 真实值预报值). 参考数据:回归直线方程 axby,其中 n i

    10、 i n i ii xx yyxx b 1 2 1 )( )( 20. (本题满分 12 分) 已知O为原点,抛物线C:)80(2 2 ppyx的准线l与 y 轴的交点为H,P为抛物线C 上横坐标为 4 的点,已知点P到准线的距离为 5. (1)求C的方程. (2)过C的焦点F作直线l与抛物线C交于A,B两点,若以AH为直径的圆过B,求 |BFAF 的值. 21. (本题满分 12 分) 已知函数1e)(mxxf x (m0),对任意 x0,都有0)(xf, (1)求实数 m 的取值范围; (2)若当 x0 时, x x x ln1 1e 恒成立,求实数的取值范围; (二)(二)选考题:共选考

    11、题:共 10 分。请考生在第分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的题中任选一题作答。如果多做,则按所做的 第一题计分第一题计分 22.选修 4-4:坐标系与参数方程(10 分) 在直角坐标系xoy中, 曲线C的参数方程为 ( sin2 cos2 y x 为参数), 直线08: yxl, 以坐标原点为极点,x轴的正半轴为极轴建立极坐标系. (1)求直线l和曲线C的极坐标方程; (2)若O为极点,直线(: 0 lR)与直线l相交于点A,与曲线C相交于不同的两点 NM,,求OAONOM的最小值. 23.选修 4-5:不等式选讲(10 分) 已知函数ttxtxxf,2)(R (1)若1t,求不等式 2 9)(xxf的解集. (2)已知1ba,若对任意xR,都存在0, 0ba使得 ab ba xf 2 4 )(,求实数t的取 值范围.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:武昌区2020届高中毕业生六月文科数学.pdf
    链接地址:https://www.163wenku.com/p-601215.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库