书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型(完整版)高中立体几何证明垂直的专题训练.doc

  • 上传人(卖家):2023DOC
  • 文档编号:6007029
  • 上传时间:2023-05-21
  • 格式:DOC
  • 页数:6
  • 大小:1.03MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)高中立体几何证明垂直的专题训练.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 高中 立体 几何 证明 垂直 专题 训练
    资源描述:

    1、高中立体几何证明垂直的专题训练深圳龙岗区东升学校 罗虎胜立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法:(1) 通过“平移”。(2) 利用等腰三角形底边上的中线的性质。(3) 利用勾股定理。(4) 利用三角形全等或三角行相似。 (5) 利用直径所对的圆周角是直角,等等。(1) 通过“平移”,根据若PEDCBA1在四棱锥P-ABCD中,PBC为正三角形,AB平面PBC,ABCD,AB=DC,.求证:AE平面PDC.分析:取PC的中点F,易证AE/BF,易证BF平面PDC(第2题图)2如图,四棱锥PABCD的底面是正方形,PA底面ABCD,PDA=45,点E

    2、为棱AB的中点求证:平面PCE平面PCD;分析:取PC的中点G,易证EG/AF,又易证AF平面PDC于是EG平面PCD,则平面PCE平面PCD3、如图所示,在四棱锥中,,是的中点,是上的点,且,为中边上的高。(1)证明:;(2)若求三棱锥的体积;(3)证明:.分析:要证,只要把FE平移到DG,也即是取AP的中点G,易证EF/GD, 易证DG平面PAB4.如图所示, 四棱锥PABCD底面是直角梯形底面ABCD, E为PC的中点, PAAD。证明: ;分析:取PD的中点F,易证AF/BE, 易证AF平面PDC(2)利用等腰三角形底边上的中线的性质ACBP5、在三棱锥中,()求证:;()求二面角的大

    3、小;6、如图,在三棱锥中,是等边三角形,PAC=PBC=90 证明:ABPC因为是等边三角形,,所以,可得。如图,取中点,连结,则,所以平面,所以。 (3)利用勾股定理_D_C_B_A_P7、如图,四棱锥的底面是边长为1的正方形, 求证:平面;8、如图1,在直角梯形中,且现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2 (1)求证:平面; (2)求证:平面; 9、如图,四面体ABCD中,O、E分别是BD、BC的中点,(1)求证:平面BCD;(2)求异面直线AB与CD所成角的大小;(1)证明:连结OC在中,由已知可得而即平面10、如图,四棱锥中,,,侧面为等边三

    4、角形,()证明:;()求与平面所成角的大小解法一: (I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,连结SE,则 又SD=1,故, 所以为直角。 由, 得平面SDE,所以。 SD与两条相交直线AB、SE都垂直。 所以平面SAB。(4)利用三角形全等或三角行相似11正方体ABCDA1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O平面MAC.分析:法一:取AB的中点E,连A1E,OE,易证ABMA1AE,于是AMA1E,又OE平面ABB1A1OEAM,AM平面OEA1D1AMD1O法二:连OM,易证D1DOOBM,于是D1OOM12如图,正三棱柱ABC

    5、A1B1C1的所有棱长都为2,D为CC1中点. 求证:AB1平面A1BD;分析: 取BC的中点E,连AE,B1E,易证DCBEBB1,从而BDEB113、.如图,已知正四棱柱ABCDA1B1C1D1中,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,求证:A1C平面BDE;(5)利用直径所对的圆周角是直角14、如图,AB是圆O的直径,C是圆周上一点,PA平面ABC.(1)求证:平面PAC平面PBC;(2)若D也是圆周上一点,且与C分居直径AB的两侧,试写出图中所有互相垂直的各对平面. 15、如图,在圆锥中,已知=,O的直径,C是狐AB的中点,为的中点证明:平面平面;16、如图,在四棱锥中,底面是矩形,平面以的中点为球心、为直径的球面交于点求证:平面平面;证:依题设,在以为直径的球面上,则.因为平面,则,又,所以平面,则,因此有平面,所以平面平面.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)高中立体几何证明垂直的专题训练.doc
    链接地址:https://www.163wenku.com/p-6007029.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库