书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型高中数学的解三角形方法大全(DOC 9页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:6006906
  • 上传时间:2023-05-21
  • 格式:DOC
  • 页数:9
  • 大小:422.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学的解三角形方法大全(DOC 9页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学的解三角形方法大全DOC 9页 高中数学 三角形 方法 大全 DOC 下载 _其他_数学_高中
    资源描述:

    1、实用标准解三角形1解三角形:一般地,把三角形的三个角和它们的对边叫做三角形的元素。已知三角形的几个元素求 其他元素的过程叫作解三角形。以下若无特殊说明,均设的三个内角的对边分别为,则有以下关系成立:(1)边的关系:,(或满足:两条较短的边长之和大于较长边)(2)角的关系:, , (3)边角关系:正弦定理、余弦定理以及它们的变形板块一:正弦定理及其应用1正弦定理:,其中为的外接圆半径 2正弦定理适用于两类解三角形问题:(1)已知三角形的任意两角和一边,先求第三个角,再根据正弦定理求出另外两边;(2)已知三角形的两边与其中一边所对的角,先求另一边所对的角(注意此角有两解、一解、无解的可能),再计算

    2、第三角,最后根据正弦定理求出第三边【例1】考查正弦定理的应用 (1)中,若,则_; (2)中,若,则_; (3)中,若,则_; (4)中,若,则的最大值为_。总结:若已知三角形的两边和其中一边所对的角,解这类三角形时,要注意有两解、一解和无解的可能如图,在中,已知、 (1)若为钝角或直角,则当时,有唯一解;否则无解。(2)若为锐角,则当时,三角形无解; 当时,三角形有唯一解; 当时,三角形有两解; 当时,三角形有唯一解实际上在解这类三角形时,我们一般根据三角形中“大角对大边”理论判定三角形是否有两解的可能。板块二:余弦定理及面积公式1余弦定理:在中,角的对边分别为,则有 余弦定理: , 其变式

    3、为:2余弦定理及其变式可用来解决以下两类三角形问题:(1)已知三角形的两边及其夹角,先由余弦定理求出第三边,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;(2)已知三角形的三条边,先由余弦定理求出一个角,再由正弦定理求较短边所对的角(或由余弦定理求第二个角),最后根据“内角和定理”求得第三个角;说明:为了减少运算量,能用正弦定理就尽量用正弦定理解决3三角形的面积公式(1) (、分别表示、上的高);(2)(3) (为外接圆半径)(4);(5) 其中(6)(是内切圆的半径,是三角形的周长)【例】考查余弦定理的基本应用(1)在中,若,求;(2)在中,若,

    4、求边上的高;(3)在中,若,求【例】(1)在中,若,则中最大角的余弦值为_(2)(10上海理)某人要制作一个三角形,要求它的三条高的长度分别为,则( ) A不能作出这样的三角形 B作出一个锐角三角形 C作出一个直角三角形 D作出一个钝角三角形(3)以为三边组成一个锐角三角形,则的取值范围为_【例】考查正余弦定理的灵活使用(1)在中,若,其面积,则_(2)在中,若,则_(3)(07天津理)在中,若,则_(4)(10江苏)在锐角中,若,则_【例】判断满足下列条件的三角形形状 (1); (2); (3); (4); (5),板块三:解三角形综合问题【例】(09全国2)在中,角的对边分别为、,求【例】

    5、(11西城一模)在中,角的对边分别为,且, (1)当时,求角的度数; (2)求面积的最大值【例】在中,求的值和的面积【例】在中,角的对边分别为,已知,(1)若的面积等于,求;(2)若,求的面积【例5】(09江西理)在中,角的对边分别为,且,(1)求 (2)若,求【例】(09安徽理)在中,, (1)求的值; (2)设,求的面积 【例】(10辽宁理)在中,角的对边分别为,且 (1)求的大小; (2)求的最大值 【例】在中,角的对边分别为, (1)求的大小; (2)求的范围【例】(11全国2)设的内角的对边分别为,已知,求【江西理】在中,角的对边分别是,已知(1)求的值; (2)若,求边的值【11江西文】在中,角的对边分别是,已知(1)求的值; (2)若,求边的值文档

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学的解三角形方法大全(DOC 9页).doc
    链接地址:https://www.163wenku.com/p-6006906.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库