书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型高中数学求值域的10种方法(DOC 12页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:6006365
  • 上传时间:2023-05-21
  • 格式:DOC
  • 页数:12
  • 大小:687.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学求值域的10种方法(DOC 12页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学求值域的10种方法DOC 12页 高中数学 值域 10 方法 DOC 12 下载 _其他_数学_高中
    资源描述:

    1、求函数值域的十种方法一直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。例1求函数的值域。【解析】,函数的值域为。【练习】1求下列函数的值域:;,。【参考答案】;。二配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。形如的函数的值域问题,均可使用配方法。例2求函数()的值域。【解析】。,。函数()的值域为。例3求函数的值域。【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。说明:在求解值域(最值)时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。例4若,试求的最大值。【分析与解】本题可看成第

    2、一象限内动点在直线上滑动时函数的最大值。利用两点,确定一条直线,作出图象易得:,y=1时,取最大值。【练习】2求下列函数的最大值、最小值与值域:;,;。【参考答案】;三反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。适用类型:分子、分母只含有一次项的函数(即有理分式一次型),也可用于其它易反解出自变量的函数类型。例5求函数的值域。分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。反解得,故函数的值域为。【练习】1求函数的值域。2求函数,的值域。【参考答案】1;。四分离变量法:适用类型1:分子、分母是一次函数的有理函数,可用分

    3、离常数法,此类问题一般也可以利用反函数法。例6:求函数的值域。解:,函数的值域为。适用类型2:分式且分子、分母中有相似的项,通过该方法可将原函数转化为为(常数)的形式。例7:求函数的值域。分析与解:观察分子、分母中均含有项,可利用分离变量法;则有 。不妨令:从而。注意:在本题中若出现应排除,因为作为分母.所以故。另解:观察知道本题中分子较为简单,可令,求出的值域,进而可得到的值域。【练习】1求函数的值域。【参考答案】1五、换元法:对于解析式中含有根式或者函数解析式较复杂的这类函数,可以考虑通过换元的方法将原函数转化为简单的熟悉的基本函数。其题型特征是函数解析式含有根式或三角函数公式模型,当根式

    4、里是一次式时,用代数换元;当根式里是二次式时,用三角换元。例8:求函数的值域。解:令(),则,。当,即时,无最小值。函数的值域为。例9:求函数的值域。解:因,即。故可令,。,故所求函数的值域为。例10.求函数的值域。解:原函数可变形为:可令X=,则有当时,当时,而此时有意义。故所求函数的值域为 例11. 求函数,的值域。解:令,则由且可得:当时,当时,故所求函数的值域为。 例12. 求函数的值域。解:由,可得故可令当时,当时,故所求函数的值域为:六、判别式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域,形如(、不同时为零)的函数的值域,常用此方法求解。例13:求

    5、函数的值域。解:由变形得,当时,此方程无解;当时,解得,又,函数的值域为七、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。例14:求函数的值域。解:当增大时,随的增大而减少,随的增大而增大,函数在定义域上是增函数。,函数的值域为。例15. 求函数的值域。解:原函数可化为:令,显然在上为无上界的增函数所以在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然,故原函数的值域为适用类型2:用于求复合函数的值域或最值。(原理:同增异减)例16:求函数的值域。分析与解:由于函数本身是由一个对数函数(外层函数)和二次函数(内层函数)复合而成,故可令:配方得

    6、:由复合函数的单调性(同增异减)知:。八、利用有界性:一般用于三角函数型,即利用等。例17:求函数的值域。解:由原函数式可得:,可化为:即即解得:故函数的值域为注:该题还可以使用数形结合法。,利用直线的斜率解题。例18:求函数的值域。解:由解得,函数的值域为。九、图像法(数形结合法):其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例19:求函数的值域。解: ,的图像如图所示,由图像知:函数的值域为 例20. 求函数的值域。解:原函数可化简得:上式可以看成数轴上点P(x)到定点A(2),间的距离之和。由上图可

    7、知,当点P在线段AB上时,当点P在线段AB的延长线或反向延长线上时,故所求函数的值域为: 例21. 求函数的值域。解:原函数可变形为:上式可看成x轴上的点到两定点的距离之和,由图可知当点P为线段与x轴的交点时,故所求函数的值域为例22. 求函数的值域。解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即:由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为:例23、:求函数的值域.分析与解:看到该函数的形式,我们可联想到直线中已知

    8、两点求直线的斜率的公式,将原函数视为定点(2,3)到动点的斜率,又知动点满足单位圆的方程,从而问题就转化为求点(2,3)到单位圆连线的斜率问题,作出图形观察易得的最值在直线和圆上点的连线和圆相切时取得,从而解得:点评:本题从函数本身的形式入手,引入直线的斜率,结合图形,从而使问题得到巧解。例24求函数的值域。分析与解答:令,则,原问题转化为 :当直线与圆在直角坐标系的第一象限有公共点时,求直线的截距的取值范围。由图1知:当经过点时,;当直线与圆相切时,。所以:值域为十:不等式法:利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、

    9、添项和两边平方等技巧。 例25. 求函数的值域。解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为: 例26. 求函数的值域。解:当且仅当,即当时,等号成立。由可得:故原函数的值域为:十一、 多种方法综合运用: 例27. 求函数的值域。解:令,则(1)当时,当且仅当t=1,即时取等号,所以(2)当t=0时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法 例28. 求函数的值域。解:令,则当时,当时,此时都存在,故函数的值域为注:此题先用换元法,后用配方法,然后再运用的有界性。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。 第12页 共 12页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学求值域的10种方法(DOC 12页).doc
    链接地址:https://www.163wenku.com/p-6006365.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库