高中数学基础知识汇总(最新版)(DOC 41页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学基础知识汇总(最新版)(DOC 41页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学基础知识汇总最新版DOC 41页 高中数学 基础知识 汇总 最新版 DOC 41 下载 _其他_数学_高中
- 资源描述:
-
1、高中数学基础知识汇总(最新版)高中数学知识归纳汇总目录第一部分 集合4第二部分 函数与导数5第三部分 三角函数、三角恒等变换与解三角形12第四部分 立体几何14第五部分 直线与圆16第六部分 圆锥曲线19第七部分 平面向量21第八部分 数列22第九部分 不等式24第十部分 复数25第十一部分 概率26第十二部分 统计与统计案例27第十三部分 算法初步29第十四部分 常用逻辑用语与推理证明30第十五部分 推理与证明32第十六部分 理科选修部分33第一部分 集合1N,Z,Q,R分别表示自然数集、整数集、有理数集、实数集;2交集,并集,符号区分;3(1)含n个元素的集合的子集数为2n,非空子集数为2
2、n1;真子集数为2n1;非空真子集的数为2n-2;(2) 注意:讨论的时候不要遗忘了的情况。(3)4是任何集合的子集,是任何非空集合的真子集。第二部分 函数与导数1定义域:抽象函数;已知 定义域,求 定义域, 与 值域相同。(具体可以参考本节第4点复合函数定义域求法)。具体函数。分母不为0,偶次根号下不为负数, 中a不为0, , 中的x为正数。2值域:一元二次方程配方法 ;换元法;分离参数法 ;3解析式:配方法 ;换元法;待定系数和;消去法。4复合函数的有关问题(1)复合函数定义域求法: 若f(x)的定义域为a,b,则复合函数fg(x)的定义域由不等式ag(x)b解出; 若fg(x)的定义域为
3、a,b,求 f(x)的定义域,相当于xa,b时,求g(x)的值域。(2)复合函数单调性的判定:首先将原函数分解为基本函数:内函数与外函数;分别研究内、外函数在各自定义域内的单调性;根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。注意:外函数的定义域是内函数的值域。5函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的必要条件;是奇函数;是偶函数 ;奇函数在原点有定义,则; 在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;6函数的单调性单调性的定义:在区间上是增函数当时有;在区间上是减函数当时有;单调性的判定 定义法:一般要将式子化为几个因式作积或作商的形式
4、,以利于判断符号; 导数法(见导数部分); 复合函数法; 图像法。注:证明单调性主要用定义法和导数法。7函数的周期性(1)周期性的定义:对定义域内的任意,若有 (其中为非零常数),则称函数为周期函数,为它的一个周期。所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。(2)三角函数的周期 ; ; ; 与周期有关的结论或 的周期为;的图象关于点中心对称周期为2;的图象关于直线轴对称周期为2;的图象关于点中心对称,直线轴对称周期为4;8基本初等函数的图像与性质幂函数: ( ;指数函数:;对数函数:;正弦函数:;余弦函数: ;(6)正切函数:;一元二次函数:;其它常用函
5、数: 正比例函数:;反比例函数:;特别的 函数;9二次函数:解析式:一般式:;顶点式:,为顶点;零点式: 。二次函数问题解决需考虑的因素:开口方向;对称轴;端点值;与坐标轴交点;判别式;两根符号。二次函数问题解决方法:数形结合;分类讨论。10函数图象: 图象作法 :描点法 (特别注意三角函数的五点作图)图象变换法图象变换: 平移变换:,左“+”右“-”; 上“+”下“-”; 伸缩变换:, (纵坐标不变,横坐标伸长为原来的 倍;, (横坐标不变,纵坐标伸长为原来的倍; 对称变换:; ; 翻转变换:右不动,右向左翻(在左侧图象去掉);上不动,下向上翻(|在下面无图象);11函数图象(曲线)对称性的
6、证明(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明函数与图象的对称性,即证明图象上任意点关于对称中心(对称轴)的对称点在的图象上,反之亦然; (注意上述两点的区别!)注:曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2ax, y)=0;曲线C1:f(x,y)=0,关于y=x+a(或y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);f(a+x)=f(bx) (xR)y=f(x)图像关于直线x=对称;
7、特别地:f(a+x)=f(ax) (xR)y=f(x)图像关于直线x=a对称;函数y=f(xa)与y=f(bx)的图像关于直线x=对称;12函数零点的求法:直接法(求的根);图象法;.13导数 导数定义:f(x)在点x0处的导数记作;常见函数的导数公式: ; 。导数的四则运算法则:(理科)复合函数的导数:导数的应用:利用导数求切线:注意:)所给点是切点吗?)所求的是“在”还是“过”该点的切线?利用导数判断函数单调性: 是增函数; 为减函数; 为常数; 利用导数求极值:求导数;求方程的根;列表得极值。利用导数最大值与最小值:求的极值;求区间端点值(如果有);得最值。14(理科)定积分 定积分的定
8、义:定积分的性质: (常数); (其中。微积分基本定理(牛顿莱布尼兹公式):定积分的应用:求曲边梯形的面积:; 求变速直线运动的路程:;求变力做功:。第三部分 三角函数、三角恒等变换与解三角形1角度制与弧度制的互化:弧度,弧度,弧度弧长公式:;扇形面积公式:。2三角函数定义:角中边上任意一点为,设则:3三角函数符号规律:一全正,二正弦,三两切,四余弦;4诱导公式记忆规律:“奇变偶不变,符号看象限”;5对称轴:;对称中心:; 对称轴:;对称中心:; 6同角三角函数的基本关系:;7. 三角函数的单调区间 的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是的递减区间是8两角和与差的正弦、
9、余弦、正切公式: 。二9. 倍角公式:;。10正、余弦定理:正弦定理: (是外接圆直径)注:;。余弦定理:等三个;注:等三个。11。几个公式:三角形面积公式:;内切圆半径r=;外接圆直径2R=11已知时三角形解的个数的判定: AbaCh其中h=bsinA,A为锐角时:ah时,无解;a=h时,一解(直角);hab时,一解(锐角)。第四部分 立体几何1三视图与直观图:注:原图形与直观图面积之比为。2表(侧)面积与体积公式:柱体:表面积:S=S侧+2S底;侧面积:S侧=;体积:V=S底h 锥体:表面积:S=S侧+S底;侧面积:S侧=;体积:V=S底h:台体:表面积:S=S侧+S上底S下底;侧面积:S
10、侧=;体积:V= (S+)h;球体:表面积:S=;体积:V= 。3位置关系的证明(主要方法):直线与直线平行:公理4;线面平行的性质定理;面面平行的性质定理。直线与平面平行:线面平行的判定定理;面面平行线面平行。平面与平面平行:面面平行的判定定理及推论;垂直于同一直线的两平面平行。直线与平面垂直:直线与平面垂直的判定定理;面面垂直的性质定理。平面与平面垂直:定义-两平面所成二面角为直角;面面垂直的判定定理。注:理科还可用向量法。4.求角:(步骤-。找或作角;。求角)异面直线所成角的求法: 平移法:平移直线,构造三角形; 补形法:补成正方体、平行六面体、长方体等,发现两条异面直线间的关系。注:理
11、科还可用向量法,转化为两直线方向向量的夹角。直线与平面所成的角:直接法(利用线面角定义);先求斜线上的点到平面距离h,与斜线段长度作比,得sin。注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。5结论: 长方体从一个顶点出发地三条棱长分别为a,b,c,则对角线长为,全面积为2ab+2bc+2ca;长方体体对角线与过同一顶点的三条棱所成的角分别为则:cos2+cos2+cos2=1;sin2+sin2+sin2=2A 正方体的棱长为a,则对角线长为,全面积为6,体积为 长方体或正方体的外接球直径2R等于长方体或正方体的对角线长;(4) 正四面体的性质:设棱长为,则正四面体的: 高:
展开阅读全文