电容电感电压电流关系-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电容电感电压电流关系-课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电容 电感 电压 电流 关系 课件
- 资源描述:
-
1、第七章第七章 电容元件和电感元件电容元件和电感元件 前几章讨论了电阻电路,即由独立电源和电阻、受控前几章讨论了电阻电路,即由独立电源和电阻、受控源、理想变压器等电阻元件构成的电路。描述这类电路电源、理想变压器等电阻元件构成的电路。描述这类电路电压电流约束关系的电路方程是代数方程。但在实际电路的压电流约束关系的电路方程是代数方程。但在实际电路的分析中,往往还需要采用电容元件和电感元件去建立电路分析中,往往还需要采用电容元件和电感元件去建立电路模型。这些元件的电压电流关系涉及到电压电流对时间的模型。这些元件的电压电流关系涉及到电压电流对时间的微分或积分,称为动态元件。含动态元件的电路称为动态微分或
2、积分,称为动态元件。含动态元件的电路称为动态电路,描述动态电路的方程是微分方程。本章先介绍两种电路,描述动态电路的方程是微分方程。本章先介绍两种储能元件储能元件电容元件和电感元件。再介绍简单动态电路微电容元件和电感元件。再介绍简单动态电路微分方程的建立。以后两章讨论一阶电路和二阶电路的时域分方程的建立。以后两章讨论一阶电路和二阶电路的时域分析,最后一章讨论线性时不变动态电路的频域分析。分析,最后一章讨论线性时不变动态电路的频域分析。1ppt课件 常用的几种电容器2ppt课件71 电容元件电容元件 一、一、电容元件电容元件 集总参数电路中与电场有关的物理过程集中在电容元集总参数电路中与电场有关的
3、物理过程集中在电容元件中进行,电容元件是构成各种电容器的电路模型所必需件中进行,电容元件是构成各种电容器的电路模型所必需的一种理想电路元件。的一种理想电路元件。电容元件的定义是:如果一个二端元件在任一时刻,电容元件的定义是:如果一个二端元件在任一时刻,其电荷与电压之间的关系由其电荷与电压之间的关系由u-q平面上一条曲线所确定,则平面上一条曲线所确定,则称此二端元件为电容元件。称此二端元件为电容元件。图图7-13ppt课件 (a)电容元件的符号电容元件的符号 (c)线性时不变电容元件的符号线性时不变电容元件的符号 (b)电容元件的特性曲线电容元件的特性曲线 (d)线性时不变电容元件的特性曲线线性
4、时不变电容元件的特性曲线 电容元件的符号和特性曲线如图电容元件的符号和特性曲线如图7-1(a)和和(b)所示。所示。其特性曲线是通过坐标原点一条直线的电容元件称为其特性曲线是通过坐标原点一条直线的电容元件称为线性电容元件,否则称为非线性电容元件。线性电容元件,否则称为非线性电容元件。图图7-14ppt课件 线性时不变电容元件的符号与特性曲线如图线性时不变电容元件的符号与特性曲线如图(c)和和(d)所所示,它的特性曲线是一条通过原点不随时间变化的直线,示,它的特性曲线是一条通过原点不随时间变化的直线,其数学表达式为其数学表达式为)17(Cuq 式中的系数式中的系数C为常量,与直线的斜率成正比,称
5、为电为常量,与直线的斜率成正比,称为电容,单位是法容,单位是法拉拉,用用F表示。表示。图图7-15ppt课件 实际电路中使用的电容器类型很多,电容的范围变化实际电路中使用的电容器类型很多,电容的范围变化很大,大多数电容器漏电很小,在工作电压低的情况下,很大,大多数电容器漏电很小,在工作电压低的情况下,可以用一个电容作为它的电路模型。当其漏电不能忽略时,可以用一个电容作为它的电路模型。当其漏电不能忽略时,则需要用一个电阻与电容的并联作为它的电路模型。则需要用一个电阻与电容的并联作为它的电路模型。在工作频率很高的情况下,还需要增加一个电感来构在工作频率很高的情况下,还需要增加一个电感来构成电容器的
6、电路模型,如图成电容器的电路模型,如图7-2所示。所示。图图7-2 电容器的几种电路模型电容器的几种电路模型 6ppt课件 二、电容元件的电压电流关系二、电容元件的电压电流关系 对于线性时不变电容元件来说,在采用电压电流关联对于线性时不变电容元件来说,在采用电压电流关联参考方向的情况下,可以得到以下关系式参考方向的情况下,可以得到以下关系式)27(ddd)(ddd)(tuCtCutqti 此式表明电容中的电流与其电压对时间的变化率成正此式表明电容中的电流与其电压对时间的变化率成正比,它与电阻元件的电压电流之间存在确定的约束关系不比,它与电阻元件的电压电流之间存在确定的约束关系不同,电容电流与此
7、时刻电压的数值之间并没有确定的约束同,电容电流与此时刻电压的数值之间并没有确定的约束关系。关系。在直流电源激励的电路模型中,当各电压电流均不随在直流电源激励的电路模型中,当各电压电流均不随时间变化的情况下,电容元件相当于一个开路时间变化的情况下,电容元件相当于一个开路(i=0)。7ppt课件 在已知电容电压在已知电容电压u(t)的条件下,用式的条件下,用式(6-2)容易求出其电流容易求出其电流i(t)。例如已知。例如已知C=1 F电容上的电压为电容上的电压为u(t)=10sin(5t)V,其波,其波形如图形如图7-3(a)所示,与电压参考方向关联的电容电流为所示,与电压参考方向关联的电容电流为
8、 A)5cos(50 A)5cos(1050 d)5sin(10d10 dd)(66 tttttuCti 图图7-3 8ppt课件在幻灯片放映时,请用鼠标单击图片放映录像。9ppt课件例例7-1 已知已知C=0.5 F电容上的电压波形如图电容上的电压波形如图7-4(a)所示,所示,试求电压电流采用关联参考方向时的电流试求电压电流采用关联参考方向时的电流iC(t),并画并画 出波形图。出波形图。图图74 例例71 10ppt课件A1=A101d)2(d105.0dd)(66CC tttuCti 2.当当1s t 3s时,时,uC(t)=4-2t,根据式,根据式72可以得到可以得到 A1A101d
9、)24(d105.0dd)(66CC tttuCti 1.当当0 t 1s 时,时,uC(t)=2t,根据式,根据式72可以得到可以得到解:根据图解:根据图74(a)波形,按照时间分段来进行计算波形,按照时间分段来进行计算图图74 例例71 11ppt课件 3.当当3s t 5s时,时,uC(t)=-8+2t,根据式,根据式72可以得到可以得到 A1A101d)28(d105.0dd)(66CC tttuCti 4.当当5s t时,时,uC(t)=12-2t,根据式,根据式72可以得到可以得到 A1A101d)212(d105.0dd)(66CC tttuCti图图74 例例71 根据以上计算
10、结果,画出图根据以上计算结果,画出图74(b)所示的矩形波形。所示的矩形波形。12ppt课件 在已知电容电流在已知电容电流iC(t)的条件下,其电压的条件下,其电压uC(t)为为)37(d)(1)0(d)(1d)(1d)(1)(0 CC0 0 CC CC tttiCuiCiCiCtu 其中其中 0 CCd)(1)0(iCu称为电容电压的初始值称为电容电压的初始值,它是从它是从t t=-=-到到t t=0=0时间范围内流过时间范围内流过电容的电流在电容上积累电荷所产生的电压。电容的电流在电容上积累电荷所产生的电压。13ppt课件 式式(73)表示表示t0某时刻电容电压某时刻电容电压uc(t)等于
11、电容电压的等于电容电压的初始值初始值uc(0)加上加上t=0到到t时刻范围内电容电流在电容上积累时刻范围内电容电流在电容上积累电荷所产生电压之和,就端口特性而言,等效为一个直流电荷所产生电压之和,就端口特性而言,等效为一个直流电压源电压源uc(0)和一个初始电压为零的电容的串联和一个初始电压为零的电容的串联 如图如图75所所示。示。)37(d)(1)0(d)(1d)(1d)(1)(0 CC0 0 CC CC tttiCuiCiCiCtu 图图7514ppt课件 从上式可以看出电容具有两个基本的性质从上式可以看出电容具有两个基本的性质 (1)电容电压的记忆性。电容电压的记忆性。从式(从式(73)
12、可见,任意时刻)可见,任意时刻T电容电压的数值电容电压的数值uC(T),要由从要由从-到时刻到时刻T之间的全部电流之间的全部电流iC(t)来确定。也就是说,来确定。也就是说,此时刻以前流过电容的任何电流对时刻此时刻以前流过电容的任何电流对时刻T 的电压都有一定的电压都有一定的贡献。这与电阻元件的电压或电流仅仅取决于此时刻的的贡献。这与电阻元件的电压或电流仅仅取决于此时刻的电流或电压完全不同,我们说电容是一种记忆元件。电流或电压完全不同,我们说电容是一种记忆元件。)37(d)(1)0(d)(1d)(1d)(1)(0 CC0 0 CC CC tttiCuiCiCiCtu 15ppt课件例例72 电
13、路如图电路如图76(a)所示,已知电容电流波形如图所示,已知电容电流波形如图76(b)所示,试求电容电压所示,试求电容电压uC(t),并画波形图。,并画波形图。图图7-616ppt课件解:根据图解:根据图(b)波形的情况,按照时间分段来进行计算波形的情况,按照时间分段来进行计算 1当当t 0时,时,iC(t)=0,根据式,根据式7-3可以得到可以得到 ttiCtu 6 CC0d0102d)(1)(2当当0 t1s时,时,iC(t)=1 A,根据式,根据式7-3可以得到可以得到 V2)s1(s1 220d10102)0(d)(1)(C 0 66C CC utttuiCtutt时时当当 图图7-6
14、17ppt课件 3当当1s t3s时,时,iC(t)=0,根据式,根据式73可以得到可以得到 V2)s3(s3 2V=0+V2d0102)1(d)(1)(C 1 6C CC utuiCtutt时时当当 4当当3s t5s时,时,iC(t)=1 A,根据式,根据式73可以得到可以得到 6V=4V+V2)s5(s5 3)2(+2d10102)3(d)(1)(C 3 66C CC uttuiCtutt时时当当 5当当5s t时,时,iC(t)=0,根据式,根据式73可以得到可以得到 6V0+V6d0102)5(d)(1)(5 6C CC ttuiCtu 18ppt课件 根据以上计算结果,可根据以上计
15、算结果,可以画出电容电压的波形如图以画出电容电压的波形如图(c)所示,由此可见任意时刻电所示,由此可见任意时刻电容电压的数值与此时刻以前容电压的数值与此时刻以前的全部电容电流均有关系。的全部电容电流均有关系。例如,当例如,当1st3s时,电时,电容电流容电流iC(t)=0,但是电容电压,但是电容电压并不等于零,电容上的并不等于零,电容上的2V电电压是压是0t1s时间内电流作用的时间内电流作用的结果。结果。图图7-619ppt课件 图图77(a)所示的峰值检波器电路,就是利用电容的记所示的峰值检波器电路,就是利用电容的记忆性,使输出电压波形忆性,使输出电压波形如图如图(b)中实线所示中实线所示保
16、持输入电压保持输入电压uin(t)波形波形如图如图(b)中虚线所示中虚线所示中的峰值。中的峰值。图图77 峰值检波器电路的输入输出波形峰值检波器电路的输入输出波形 20ppt课件 (2)电容电压的连续性电容电压的连续性 从例从例72的计算结果可以看出,电容电流的波形是不的计算结果可以看出,电容电流的波形是不连续的矩形波,而电容电压的波形是连续的。从这个平滑连续的矩形波,而电容电压的波形是连续的。从这个平滑的电容电压波形可以看出电容电压是连续的一般性质。即的电容电压波形可以看出电容电压是连续的一般性质。即电容电流在闭区间电容电流在闭区间t1,t2有界时,电容电压在开区间有界时,电容电压在开区间(
17、t1,t2)内内是连续的。这可以从电容电压、电流的积分关系式中得到是连续的。这可以从电容电压、电流的积分关系式中得到证明。证明。将将t=T和和t=T+dt代入式代入式(63)中,其中中,其中t1Tt2和和t1T+dt0时,时,W(t)不可能为负值,电容不可能放出多于不可能为负值,电容不可能放出多于它储存的能量,这说明电容是一种储能元件。由于电容电它储存的能量,这说明电容是一种储能元件。由于电容电压确定了电容的储能状态,称电容电压为状态变量。压确定了电容的储能状态,称电容电压为状态变量。从式从式(75)也可以理解为什么电容电压不能轻易跃变,也可以理解为什么电容电压不能轻易跃变,这是因为电容电压的
18、跃变要伴随电容储存能量的跃变,在这是因为电容电压的跃变要伴随电容储存能量的跃变,在电流有界的情况下,是不可能造成电场能量发生跃变和电电流有界的情况下,是不可能造成电场能量发生跃变和电容电压发生跃变的。容电压发生跃变的。)57()(21)(2C tuCtW28ppt课件 若电容的初始储能为零,即若电容的初始储能为零,即u(t0)=0,则任意时刻储存在则任意时刻储存在电容中的能量为电容中的能量为)57()(21)(2C tuCtW 此式说明某时刻电容的储能取决于该时刻电容的电压此式说明某时刻电容的储能取决于该时刻电容的电压值,与电容的电流值无关。值,与电容的电流值无关。电容电压的绝对值增大时,电容
19、储能增加;电容电压电容电压的绝对值增大时,电容储能增加;电容电压的绝对值减小时,电容储能减少。的绝对值减小时,电容储能减少。29ppt课件 1.1.两个线性电容并联单口网络,就其端口特性而言,两个线性电容并联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:等效于一个线性电容,其等效电容的计算公式推导如下:tuCtuCCtuCtuCiiidddd)(dddd212121 四、电容的串联和并联四、电容的串联和并联图图710 列出图列出图710(a)的的KCL方程,代入电容的电压电流关方程,代入电容的电压电流关系,得到端口的电压电流关系系,得到端口的电压电流关系其中其中
20、 6)(7 21 CCC30ppt课件 2.两个线性电容串联单口网络,就其端口特性而言,等效两个线性电容串联单口网络,就其端口特性而言,等效于一个线性电容,其等效电容的计算公式推导如下:于一个线性电容,其等效电容的计算公式推导如下:列出图列出图711(a)的的KVL方程,代入电容的电压电流关系,方程,代入电容的电压电流关系,得到端口的电压电流关系得到端口的电压电流关系图图711 tttdiCdiCdiCtututu )(1)(1)(1)()()(2121其中其中 21111CCC 7)(7 2121CCCCC 由此求得由此求得 31ppt课件 名名 称称时间时间 名名 称称时间时间 1 1电容
21、的电压电流波形电容的电压电流波形4:162 2电感的电压电流波形电感的电压电流波形2:413 3回转器变电容为电感回转器变电容为电感2:42 根据教学需要,用鼠标点击名称的方法放映相关录像。根据教学需要,用鼠标点击名称的方法放映相关录像。32ppt课件郁金香33ppt课件 常用的几种电感器常用的几种电感器72 电电感感元件元件34ppt课件 如果一个二端元件在任一时刻,其磁通链与电流之间的如果一个二端元件在任一时刻,其磁通链与电流之间的关系由关系由i 平面上一条曲线所确定,则称此二端元件为电平面上一条曲线所确定,则称此二端元件为电感元件。电感元件的符号和特性曲线如图感元件。电感元件的符号和特性
22、曲线如图712(a)和和(b)所所示。示。(a)电感元件的符号电感元件的符号 (c)线性时不变电感元件的符号线性时不变电感元件的符号 (b)电感元件的特性曲线电感元件的特性曲线 (d)线性时不变电感的特性曲线线性时不变电感的特性曲线图图7-12一、一、电感元件电感元件35ppt课件 其特性曲线是通过坐标原点一条直线的电感元件称为其特性曲线是通过坐标原点一条直线的电感元件称为线性电感元件,否则称为非线性电感元件。线性时不变电线性电感元件,否则称为非线性电感元件。线性时不变电感元件的符号与特性曲线如图感元件的符号与特性曲线如图(c)和和(d)所示,它的特性曲线所示,它的特性曲线是一条通过原点不随时
23、间变化的直线,其数学表达式为是一条通过原点不随时间变化的直线,其数学表达式为)97(Li 式中的系数式中的系数L为常量,与直线的斜率成正比,称为电为常量,与直线的斜率成正比,称为电感,单位是亨感,单位是亨利利,用用H表示。表示。图图7-1236ppt课件 实际电路中使用的电感线圈类型很多,电感的范围变实际电路中使用的电感线圈类型很多,电感的范围变化很大,例如高频电路中使用的线圈容量可以小到几个微化很大,例如高频电路中使用的线圈容量可以小到几个微亨亨(H,1 H=10-6H),低频滤波电路中使用扼流圈的电感可低频滤波电路中使用扼流圈的电感可以大到几亨。电感线圈可以用一个电感或一个电感与电阻以大到
24、几亨。电感线圈可以用一个电感或一个电感与电阻的串联作为它的电路模型。在工作频率很高的情况下,还的串联作为它的电路模型。在工作频率很高的情况下,还需要增加一个电容来构成线圈的电路模型,如图需要增加一个电容来构成线圈的电路模型,如图713所示。所示。图图913 电感器的几种电路模型电感器的几种电路模型 37ppt课件二、电感的电压电流关系二、电感的电压电流关系 对于线性时不变电感元件来说,在采用电压电流关联对于线性时不变电感元件来说,在采用电压电流关联参考方向的情况下,可以得到参考方向的情况下,可以得到)107(ddd)(ddd)(tiLtLittu 此式表明电感中的电压与其电流对时间的变化率成正
25、比,此式表明电感中的电压与其电流对时间的变化率成正比,与电阻元件的电压电流之间存在确定的约束关系不同,电感与电阻元件的电压电流之间存在确定的约束关系不同,电感电压与此时刻电流的数值之间并没有确定的约束关系。电压与此时刻电流的数值之间并没有确定的约束关系。在直流电源激励的电路中,磁场不随时间变化在直流电源激励的电路中,磁场不随时间变化,各电压电各电压电流均不随时间变化时,电感相当于一个短路流均不随时间变化时,电感相当于一个短路(u=0)。38ppt课件 在已知电感电流在已知电感电流i(t)的条件下,用式的条件下,用式(710)容易求出其容易求出其电压电压u(t)。例如例如L=1mH的电电感上,施
展开阅读全文