圆和相似结合初三(DOC 24页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《圆和相似结合初三(DOC 24页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆和相似结合初三DOC 24页 相似 结合 初三 DOC 24
- 资源描述:
-
1、圆和相似(初三)一解答题(共18小题)1(2012铜仁地区)如图,已知O的直径AB与弦CD相交于点E,ABCD,O的切线BF与弦AD的延长线相交于点F(1)求证:CDBF;(2)若O的半径为5,cosBCD=,求线段AD的长2(2013河东区一模)如图,已知CD是O的直径,ACBC,垂足为C,点E为圆上一点,直线BE、CD相交于点A,且A+2AED=90()证明:直线AB是O的切线;()当BC=1,AE=2,求tanOBC的值3(2011湛江)如图,在RtABC中,C=90,点D是AC的中点,过点A,D作O,使圆心O在AB上,O与AB交于点E(1)若A+CDB=90,求证:直线BD与O相切;(
2、2)若AD:AE=4:5,BC=6,求O的直径4(2012丰润区一模)如图,已知O的直径AB与弦CD相互垂直,垂足为点E,过点B作CD的平行线与弦AD的延长线相交于点F,且AD=3,cosBCD=(1)求证:BF为O的切线(2)求O的半径5(2013塘沽区二模)如图(1),AB为O的直径,C为O上一点,若直线CD与O相切于点C,ADCD,垂足为D()求证:ADCACB;()如果把直线CD向下平行移动,如图(2),直线CD交O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求的值6(2012德州)如图,点A,E是半圆周上的三等分点,直径BC=2,ADBC,垂足为D,连接BE交AD于F
3、,过A作AGBE交BC于G(1)判断直线AG与O的位置关系,并说明理由(2)求线段AF的长7(1997湖南)已知:如图,AB是O的直径,PB切O于点B,PA交O于点C,APB是平分线分别交BC,AB于点D、E,交O于点F,A=60,并且线段AE、BD的长是一元二次方程 x2kx+2=0的两根(k为常数)(1)求证:PABD=PBAE;(2)求证:O的直径长为常数k;(3)求tanFPA的值8(2005柳州)已知,如图,直线l与O相切于点D,弦BCl,与直径AD相交于点G,弦AF与BC交于点E,弦CF与AD交于点H(1)求证:AB=AC;(2)如果AE=6,EF=2,求AC9(2006黄冈)如图
4、,AB、AC分别是O的直径和弦,点D为劣弧AC上一点,弦ED分别交O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P(1)若PC=PF,求证:ABED;(2)点D在劣弧AC的什么位置时,才能使AD2=DEDF,为什么?10已知:如图,在半径为4的O中,AB,CD是两条直径,M为OB的中点,CM的延长线交O于点E,且EMMC连接DE,DE=(1)求证:AMMB=EMMC;(2)求sinEOB的值;(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是O的切线11(2012临沂)如图,点A、B、C分别是O上的点,B=60,AC=3,CD是O的直径,P是CD延长线上的一
5、点,且AP=AC(1)求证:AP是O的切线;(2)求PD的长12(2012陕西)如图,PA、PB分别与O相切于点A、B,点M在PB上,且OMAP,MNAP,垂足为N(1)求证:OM=AN;(2)若O的半径R=3,PA=9,求OM的长13(2012东营)如图,AB是O的直径,AM和BN是它的两条切线,DE切O于点E,交AM于点D,交BN于点C,(1)求证:ODBE;(2)如果OD=6cm,OC=8cm,求CD的长14(2013黄石)如图,AB是O的直径,AM和BN是O的两条切线,E是O上一点,D是AM上一点,连接DE并延长交BN于点C,且ODBE,OFBN(1)求证:DE与O相切;(2)求证:O
6、F=CD15(2012枣庄)如图,AB是O的直径,弦CDAB于点E,过点B作O的切线,交AC的延长线于点F已知OA=3,AE=2,(1)求CD的长;(2)求BF的长16(2012达州)如图,C是以AB为直径的O上一点,过O作OEAC于点E,过点A作O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P(1)求证:PC是O的切线(2)若AF=1,OA=,求PC的长17(2012衢州)如图,在RtABC中,C=90,ABC的平分线交AC于点D,点O是AB上一点,O过B、D两点,且分别交AB、BC于点E、F(1)求证:AC是O的切线;(2)已知AB=10,BC=6,求O的半径r18(201
7、2怀化)如图,已知AB是O的弦,OB=4,OBC=30,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交O于点D,连接AD、DB(1)当ADC=18时,求DOB的度数;(2)若AC=2,求证:ACDOCB(2013天津)已知直线l与O,AB是O的直径,ADl于点D()如图,当直线l与O相切于点C时,若DAC=30,求BAC的大小;()如图,当直线l与O相交于点E、F时,若DAE=18,求BAF的大小圆和相似结合(初三)参考答案与试题解析一解答题(共18小题)1(2012铜仁地区)如图,已知O的直径AB与弦CD相交于点E,ABCD,O的切线BF与弦AD的延长线相交于点F(1)求证
8、:CDBF;(2)若O的半径为5,cosBCD=,求线段AD的长考点:切线的性质;圆周角定理;解直角三角形1414687专题:压轴题分析:(1)由BF是O的切线,AB是O的直径,根据切线的性质,即可得BFAB,又由ABCD,即可得CDBF;(2)又由AB是O的直径,可得ADB=90,由圆周角定理,可得BAD=BCD,然后由O的半径为5,cosBCD=,即可求得线段AD的长解答:(1)证明:BF是O的切线,AB是O的直径,BFAB,3分CDAB,CDBF; 6分(2)解:AB是O的直径,ADB=90,7分O的半径5,AB=10,8分BAD=BCD,10分cosBAD=cosBCD=,AD=cos
9、BADAB=10=8,AD=812分点评:此题考查了切线的性质、平行线的判定、圆周角定理以及三角函数的性质此题难度适中,注意数形结合思想与转化思想的应用2(2013河东区一模)如图,已知CD是O的直径,ACBC,垂足为C,点E为圆上一点,直线BE、CD相交于点A,且A+2AED=90()证明:直线AB是O的切线;()当BC=1,AE=2,求tanOBC的值考点:切线的判定1414687专题:计算题分析:(I)连接OE,CE,OB,求出BC=BE,证出OEBOCB,推出OEB=ACB=90,根据切线的判定推出即可;(II)证AEOACB,推出=,求出=,解直角三角形求出即可解答:()证明:连接O
10、E,CE,OB,DC为圆O的直径,DEC=90,即CEB+AED=90,2AED+2CEB=180,ACBC,ACB=90,A+ABC=90,A+2AED=90,ABC=2AED,ABC+2CEB=180,ABC+CEB+ECB=180,CEB=ECB,BC=BE,在OEB和OCB中,OEBOCB,OEB=ACB=90,即OEAB,AB是O切线()解:BE=BC=1,AB=2+1=3,在RtACB中,由勾股定理得:AC=2,A=A,AEO=ACB=90,AEOACB,=,=,tanOBC=点评:本题考查了全等三角形的性质和判定,切线的判定和性质,相似三角形的性质和判定,解直角三角形的应用,主要
11、考查学生综合运用性质进行推理和计算的能力3(2011湛江)如图,在RtABC中,C=90,点D是AC的中点,过点A,D作O,使圆心O在AB上,O与AB交于点E(1)若A+CDB=90,求证:直线BD与O相切;(2)若AD:AE=4:5,BC=6,求O的直径考点:切线的判定与性质;勾股定理;三角形中位线定理;圆周角定理1414687专题:几何综合题;压轴题分析:(1)连接OD,由A=ADO,进而证得ADO+CDB=90,而证得BDOD;(2)连接DE,由AE是直径,得到ADE=90,然后利用已知条件可以证明DEBC,从而得到ADEACB,接着利用相似三角形的性质得到AD:AC=DE:BC,又D是
12、AC中点,由此可以求出DE的长度,而AD:AE=4:5,在直角ADE中,设AD=4x,AE=5x,那么DE=3x,由此求出x=1即可解决问题解答:解:(1)连接OD,OA=OD,A=ADO,又A+CDB=90,ADO+CDB=90,ODB=180(ADO+CDB)=90,BDOD,BD是O切线;(2)连接DE,(7分)AE是直径,ADE=90,(8分)又C=90,ADE=C,A=A,ADEACB,(9分)AD:AC=DE:BC又D是AC中点,AD=AC,DE=BC,BC=6,DE=3,(11分)AD:AE=4:5,在直角ADE中,设AD=4x,AE=5x,那么DE=3x,x=1AE=5点评:本
13、题考查了切线的判定和性质、平行线的判定和性质、平行线分线段成比例定理以及推论、勾股定理、相似三角形的判定和性质解题的关键是连接OD、DE,证明DEBC4(2012丰润区一模)如图,已知O的直径AB与弦CD相互垂直,垂足为点E,过点B作CD的平行线与弦AD的延长线相交于点F,且AD=3,cosBCD=(1)求证:BF为O的切线(2)求O的半径考点:切线的判定;圆周角定理;解直角三角形1414687分析:(1)由ABCD,BFCD,可得ABBF,又由AB是O的直径,即可证得BF为O的切线;(2)首先连接BD,由AB是O的直径,可得ADB是直角,又由AD=3,cosBCD=,即可得cosBAD=,继
14、而求得答案解答:(1)证明:ABCD,BFCD,ABBF,AB是O的直径,BF为O的切线;(2)解:连接BD,AB是O的直径,ADB=90,BCD=BAD,cosBCD=,cosBAD=,AD=3,AB=4,O的半径为2点评:此题考查了切线的判定、圆周角定理以及锐角三角函数的性质此题难度适中,注意掌握辅助线的作法,注意数形结合思想与转化思想的应用5(2013塘沽区二模)如图(1),AB为O的直径,C为O上一点,若直线CD与O相切于点C,ADCD,垂足为D()求证:ADCACB;()如果把直线CD向下平行移动,如图(2),直线CD交O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求
15、的值考点:切线的性质;相似三角形的判定与性质1414687分析:(I)连接OC,求出ADC=ACB,DCA=B,根据相似三角形的判定推出即可;(II)根据勾股定理求出AB,求出ACG+B=180,求出DCA=B,求出ADC=AGB,证ADCAGB,得出比例式,代入求出即可解答:(I)证明:连接OC,OC=OB,OBC=OCB,AB是O直径,DC切O于C,ADDC,ADC=DCO=ACB=90,DCA+ACO=ACO+OCB=90,DCA=OCB=OBC,ADC=ACB,DCA=OBC,ADCACB(II)解:AB是O直径,AGB=90,AG=4,BG=3,由勾股定理得:AB=5,四边形ACGB
16、是O的内接四边形,B+ACG=180,ACD+ACG=180,B=DCA,ADDC,ADC=AGB,ADCAGB,=,=点评:本题考查了圆内接四边形,切线的性质,圆周角定理,相似三角形的性质和判定,等腰三角形的性质的应用,关键是推出ADCACB或ADCAGB6(2012德州)如图,点A,E是半圆周上的三等分点,直径BC=2,ADBC,垂足为D,连接BE交AD于F,过A作AGBE交BC于G(1)判断直线AG与O的位置关系,并说明理由(2)求线段AF的长考点:切线的判定;等边三角形的判定与性质;垂径定理;解直角三角形1414687专题:计算题;证明题分析:(1)求出弧AB=弧AE=弧EC,推出OA
17、BE,根据AGBE,推出OAAG,根据切线的判定即可得出答案;(2)求出等边三角形AOB,求出BD、AD长,求出EBC=30,在FBD中,通过解直角三角形求出DF即可解答:解:(1)直线AG与O的位置关系是AG与O相切,理由是:连接OA,点A,E是半圆周上的三等分点,弧AB=弧AE=弧EC,点A是弧BE的中点,OABE,又AGBE,OAAG,AG与O相切 (2)点A,E是半圆周上的三等分点,AOB=AOE=EOC=60,又OA=OB,ABO为正三角形,又ADOB,OB=1,BD=OD=,AD=,又EBC=EOC=30(圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半),在RtFBD中,F
18、D=BDtanEBC=BDtan30=,AF=ADDF=答:AF的长是点评:本题考查了解直角三角形,垂径定理,切线的判定等知识点的应用,能运用定理进行推理和计算是解此题的关键,注意:垂径定理和解直角三角形的巧妙运用,题目比较好,难度也适中7(1997湖南)已知:如图,AB是O的直径,PB切O于点B,PA交O于点C,APB是平分线分别交BC,AB于点D、E,交O于点F,A=60,并且线段AE、BD的长是一元二次方程 x2kx+2=0的两根(k为常数)(1)求证:PABD=PBAE;(2)求证:O的直径长为常数k;(3)求tanFPA的值考点:圆的综合题1414687专题:压轴题分析:(1)由PB
19、切O于点B,根据弦切角定理,可得PBD=A,又由PF平分APB,可证得PBDPAE,然后由相似三角形的对应边成比例,证得PABD=PBAE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:O的直径长为常数k;(3)由A=60,并且线段AE、BC的长是一元二次方程 x2kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tanFPB的值,则可得tanFPA的值解答:(1)证明:如图,PB切O于点B,PBD=A,PF平分APB,APE=BPD,PBDPAE,PB:PA=BD:AE,PABD=PB
展开阅读全文