初二数学因式分解超级经典专题讲解(DOC 8页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《初二数学因式分解超级经典专题讲解(DOC 8页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二数学因式分解超级经典专题讲解DOC 8页 初二 数学 因式分解 超级 经典 专题 讲解 DOC 下载 _其它资料_数学_初中
- 资源描述:
-
1、因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,余数定理法,求根公式法,换元法等。注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x2+x=-x(3x-1))1 基本方法1.1提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而
2、且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。注意:把2a2+1/2变成2(a2+1/4)不叫提公因式1.2 公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22abb2(a
3、b) 2;注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。补充公式:立方和公式:a3+b3=(a+b)(a2-ab+b2); 立方差公式:a3-b3=(a-b)(a2+ab+b2);完全立方公式:a33a2b3ab2b3=(ab) 3公式:a3+b3+c3+3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)例如:a2 +4ab+4b2 =(a+2b) 2。(注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。)3.提公因式法基本步骤:(1)找出公因式;(2)提公因式并确定另
4、一个因式:第一步找公因式可按照确定公因式的方法先确定系数在确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式;提完公因式后,另一因式的项数与原多项式的项数相同。 1、把分解因式的结果是 .2、在实数范围内分解因式:= 3、把多项式分解因式,结果是 4、分解因式:=_5、因式分解:= 6、已知,求代数式的值; 7、分解因式 x(x1)3x+4= 8、求证:两个奇数的平方差一定能被8整除。9、已知:| x + y + 1| +| xy - 3 | = 0 求代数式x
5、y3 + x3y 的值。10、下列因式分解:;.其中正确的是_.(只填序号)2 竞赛用到的方法2.2分组分解法分组分解是解方程的一种简洁的方法,我们来学习这个知识。 我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式 如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式 原式=(am +an)+(bm+ bn) a(m+ n)+b(m +n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能继续分解,所以 原式=(am +an)+
6、(bm+ bn) a(m+ n)+b(m+ n) (m +n)(a +b) 这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式 又如:ax+ay+bx+by=a(x+y)+b(x+y)=(a+b)(x+y)我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。同样,这道题也可以这样做。ax+ay+bx+by=x(a+b)+y(a+b)=(a+b)(x+y)几道例题:1. 5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x
7、+3y)(a+b)说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。2. x3-x2+x-1解法:=(x3-x2)+(x-1)=x2(x-1)+(x-1)=(x-1)(x2+1)利用二二分法,提公因式法提出x2,然后相合轻松解决。3. x2-x-y2-y解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。题目1、4xy-3xz+8y-6z 2、x3+3x2+3x+9 3、3xy-2x-12y+18 4、
8、ab-5bc-2a2+10ac5、x4+64 6 、x4-7x2+12.2 十字相乘法x2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) 十字相乘法口诀:首尾分解,交叉相乘,求和凑中2.3 待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。于是设x4
展开阅读全文