利用导数研究函数的极值参考模板范本.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《利用导数研究函数的极值参考模板范本.ppt》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 利用 导数 研究 函数 极值 参考 模板 范本
- 资源描述:
-
1、函数函数 y=f(x)在点在点x1、x2、x3、x4处的处的函数值函数值f(x1)、f(x2)、f(x3)、f(x4),与它们左右,与它们左右近旁各点处的函数值,相比有什么特点近旁各点处的函数值,相比有什么特点?观察图像:观察图像:yxOaby=f(x)x1 f(x1)x2 f(x2)x3 f(x3)x4 f(x4)例例1一、函数的极值定义一、函数的极值定义如果对如果对X0附近附近的所有点的所有点X,都有,都有f(x)f(x0),则称函数则称函数f(x)在点在点X0处取极小值,记作处取极小值,记作y极小值极小值=f(x0);并把并把X0称称为函数为函数f(x)的一个极小植点。的一个极小植点。函
2、数的极大值与极小值统称为函数的极大值与极小值统称为极值极值.极大值点与极小极大值点与极小值点统称为值点统称为极值点极值点已知已知 函数函数y=f(x),设,设X0是定义域(是定义域(a,b)内任一点内任一点,yox0 xaboxy0 xbacd efoghijxy xfy=aboxy xfy=103.1图图113.1图图探究探究 1、图中有哪些极值点和最值点?图中有哪些极值点和最值点?2、函数极值点可以有多个吗?极大值一定、函数极值点可以有多个吗?极大值一定比极小值大么?比极小值大么?3、最值和极值有什么联系和区别、最值和极值有什么联系和区别?4、端点可能是极值点吗?、端点可能是极值点吗?练习
3、:课本练习:课本30页页A A、1(1)函数的极值是就函数在某一点附近的小区间)函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极而言的,在函数的整个定义区间内可能有多个极大值或极小值,而最值是对整体而言。大值或极小值,而最值是对整体而言。(2)极大值不一定比极小值大。)极大值不一定比极小值大。(3)极值点不一定是最值点。)极值点不一定是最值点。观察与思考:观察与思考:极值与导数有何关系?极值与导数有何关系?在极值点处,曲线如果有切线,则切线是水平的。在极值点处,曲线如果有切线,则切线是水平的。f (x1)=0 f (x2)=0 f (x3)=0 f (b)=0y
4、=f(x)yxOabx1x2x3c结论:设结论:设x=x0是是y=f(x)的极值点,且的极值点,且f(x)在在x=x0是可导的,则必有是可导的,则必有f (x0)=0 f (x)0 yxOx1aby=f(x)f (x)0 f (x)0 1、如果在、如果在x0附近的左侧附近的左侧f(x)0,右侧,右侧f(x)0,则则f(x0)是极大值;是极大值;2、如果在、如果在x0附近的左侧附近的左侧f(x)0,则则f(x0)是极小值;是极小值;已知函数已知函数f(x)在点在点x0处是处是连续连续的,且的,且 f (x0)=0则则二、判断函数极值的方法二、判断函数极值的方法x2导数为导数为0的点不一定是极值点
5、;的点不一定是极值点;若极值点处的导数存在,则一定为若极值点处的导数存在,则一定为0点评:可导函数点评:可导函数)(xfy=在点在点x0取得极值的充分必要条取得极值的充分必要条件是件是,0)(=oxf且在点且在点x0左侧和右侧,左侧和右侧,f (x)异号。异号。注意注意:函数极值是在某一点附近的小区间内定义:函数极值是在某一点附近的小区间内定义的,是的,是局部性质局部性质。因此一个函数在其整个定义区间。因此一个函数在其整个定义区间上可能有上可能有多个极大值或极小值多个极大值或极小值,并对同一个函数来,并对同一个函数来说,在某说,在某一点的极大值也可能小于另一点的极小值一点的极大值也可能小于另一
6、点的极小值。练习练习:判断下面判断下面4个命题,其中是真命题序号为个命题,其中是真命题序号为 。可导函数必有极值;可导函数必有极值;函数的极值点必在定义域内;函数的极值点必在定义域内;函数的极小值一定小于极大值。函数的极小值一定小于极大值。(设极小值、极大值都存在);(设极小值、极大值都存在);函数的极小值(或极大值)不会多于一个。函数的极小值(或极大值)不会多于一个。xy2=如如1、求可导函数、求可导函数f(x)极值的极值的 步骤:步骤:(2)求导数求导数f(x);(3)求方程求方程f(x)=0的根;的根;(4)把定义域划分为把定义域划分为部分区间,并列成表格部分区间,并列成表格检查检查f(
展开阅读全文