一次函数复习教案设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一次函数复习教案设计.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 复习 教案设计
- 资源描述:
-
1、一次函数知识巩固、提升知识点一、函数的相关概念 一般地,在一个变化过程中. 如果有两个变量 与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数. 是的函数,如果当时,那么叫做当自变量为时的函数值. 函数的表示方法有三种:解析式法,列表法,图象法.知识点二、一次函数的相关概念一次函数的一般形式为,其中、是常数,0.特别地,当0时,一次函数即(0),是正比例函数.知识点三、一次函数的图象及性质1、函数的图象如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 要点诠释:直线可以看作由直线平移|个单位长度而
2、得到(当0时,向上平移;当0时,向下平移).说明通过平移,函数与函数的图象之间可以相互转化.2、一次函数性质及图象特征掌握一次函数的图象及性质(对比正比例函数的图象和性质)要点诠释:理解、对一次函数的图象和性质的影响:(1)决定直线从左向右的趋势(及倾斜角的大小倾斜程度),决定它与轴交点的位置,、一起决定直线经过的象限 (2)两条直线:和:的位置关系可由其系数确定:与相交;,且与平行;,且与重合;(3)直线与一次函数图象的联系与区别一次函数的图象是一条直线;特殊的直线、直线不是一次函数的图象.知识点四、用函数的观点看方程、方程组、不等式方程(组)、不等式问题函 数 问 题从“数”的角度看从“形
3、”的角度看求关于、的一元一次方程0(0)的解为何值时,函数的值为0?确定直线与轴(即直线0)交点的横坐标 求关于、的二元一次方程组的解为何值时,函数与函数的值相等?确定直线与直线的交点的坐标求关于的一元一次不等式0(0)的解集为何值时,函数的值大于0?确定直线在轴(即直线0)上方部分的所有点的横坐标的范围【典型例题】类型一、函数的概念1、下列说法正确的是:( ) .变量满足,则是的函数;.变量满足,则是的函数; .变量满足,则是的函数; .变量满足,则是的函数.【总结升华】理解函数的概念,关键是函数与自变量之间是单值对应关系,自变量的值确定后,函数值是唯一确定的.举一反三:【变式】如图的四个图
4、象中,不表示某一函数图象的是( )2、求函数的自变量的取值范围. 【思路点拨】要使函数有意义,需或解这个不等式组即可.【总结升华】自变量的取值范围是使函数有意义的的集合.举一反三:【变式】求出下列函数中自变量的取值范围(1)(2)(3)类型二、一次函数的解析式3、已知与成正比例关系,且其图象过点(3,3),试确定与的函数关系,并画出其图象【思路点拨】与成正比例关系,即,将点(3,3)代入求得函数关系式.【总结升华】与成正比例满足关系式,与2成正比例满足关系式,注意区别.举一反三:【变式】直线平行于直线,且与轴交于点(2,0),求这条直线的解析式.类型三、一次函数的图象和性质4、已知正比例函数(
展开阅读全文