七年级数学下册《生活中的轴对称》全章复习与巩固(基础)知识讲解.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《七年级数学下册《生活中的轴对称》全章复习与巩固(基础)知识讲解.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生活中的轴对称 七年 级数 下册 生活 中的 轴对称 复习 巩固 基础 知识 讲解 下载 _其它资料_数学_初中
- 资源描述:
-
1、生活中的轴对称全章复习与巩固(基础)【学习目标】1.认识和欣赏身边的轴对称图形,增进学习数学的兴趣.2.了解轴对称的概念,探索轴对称、轴对称图形的基本性质及它们的简单应用.3.探索线段的垂直平分线、角平分线和等腰三角形的性质以及判定方法.4.能按照要求,画出一些轴对称图形.【知识网络】【要点梳理】要点一、轴对称【高清课堂:389304 轴对称复习,本章概述】1.轴对称图形和轴对称(1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称定义
2、:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴. 要求诠释:成轴对称的两个图形的性质:关于某条直线对称的两个图形形状相同,大小相等,是全等形;如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系要点诠释: 轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形
3、关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心外心.3.角平分线角平分线性质是:角平分线上的任意一点,到角两边的距离相等
4、;反过来,在角的内部到角两边的距离相等的点在角平分线上.要点诠释: 前者的前提条件是已经有角平分线了,即角被平分了;后者则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.要点二、作轴对称图形 1.作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.要点三、等腰三角形 1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.如图所示,在ABC中
5、,ABAC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,A是顶角,B、C是底角要点诠释:等腰直角三角形的两个底角相等,且都等于45.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)A1802B,BC (2)等腰三角形性质 等腰三角形的两个底角相等,即“等边对等角”;等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等 边”).要点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等
6、关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理2.等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.要点诠释:由定义可知,等边三角形是一种特殊的等腰三角形也就是说等腰三角形包括等边三角形(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60.(3)等边三角形的判定: 三条边都相等的三角形是等边三角形; 三个角都相等的三角形是等边三角形; 有一个角为 60的等腰三角形是等边三角形.【典型例题】类型一、轴对称的判断与应用1、如图所示的是在一面镜子里看到的一个算式,该算式的实际情况是怎样的?【答案与解析】该算式的情况是:12085205【总结升华】从
展开阅读全文