(高考数学热点问题)第63炼-立体几何中的建系设点问题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(高考数学热点问题)第63炼-立体几何中的建系设点问题.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考数学热点问题 高考 数学 热点问题 63 立体几何 中的 设点 问题 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、第63炼 立体几何解答题的建系设点问题 在如今的立体几何解答题中,有些题目可以使用空间向量解决问题,与其说是向量运算,不如说是点的坐标运算,所以第一个阶段:建系设点就显得更为重要,建立合适的直角坐标系的原则有哪些?如何正确快速写出点的坐标?这是本文要介绍的内容。一、基础知识:(一)建立直角坐标系的原则:如何选取坐标轴1、轴的选取往往是比较容易的,依据的是线面垂直,即轴要与坐标平面垂直,在几何体中也是很直观的,垂直底面高高向上的即是,而坐标原点即为轴与底面的交点2、轴的选取:此为坐标是否易于写出的关键,有这么几个原则值得参考:(1)尽可能的让底面上更多的点位于轴上(2)找角:轴要相互垂直,所以要
2、利用好底面中的垂直条件(3)找对称关系:寻找底面上的点能否存在轴对称特点3、常用的空间直角坐标系满足轴成右手系,所以在标轴时要注意。4、同一个几何体可以有不同的建系方法,其坐标也会对应不同。但是通过坐标所得到的结论(位置关系,角)是一致的。5、解答题中,在建立空间直角坐标系之前,要先证明所用坐标轴为两两垂直(即一个线面垂直底面两条线垂直),这个过程不能省略。6、与垂直相关的定理与结论:(1)线面垂直: 如果一条直线与一个平面上的两条相交直线垂直,则这条直线与该平面垂直 两条平行线,如果其中一条与平面垂直,那么另外一条也与这个平面垂直 两个平面垂直,则其中一个平面上垂直交线的直线与另一个平面垂直
3、 直棱柱:侧棱与底面垂直(2)线线垂直(相交垂直): 正方形,矩形,直角梯形 等腰三角形底边上的中线与底边垂直(三线合一) 菱形的对角线相互垂直 勾股定理逆定理:若,则 (二)坐标的书写:建系之后要能够快速准确的写出点的坐标,按照特点可以分为3类1、能够直接写出坐标的点(1) 坐标轴上的点,例如在正方体(长度为1)中的点,坐标特点如下:轴: 轴: 轴: 规律:在哪个轴上,那个位置就有坐标,其余均为0(2)底面上的点:坐标均为,即竖坐标,由于底面在作立体图时往往失真,所以要快速正确写出坐标,强烈建议在旁边作出底面的平面图进行参考:以上图为例:则可快速写出点的坐标,位置关系清晰明了 2、空间中在底
4、面投影为特殊位置的点: 如果在底面的投影为,那么(即点与投影点的横纵坐标相同) 由这条规律出发,在写空间中的点时,可看下在底面的投影点,坐标是否好写。如果可以则直接确定了横纵坐标,而竖坐标为该点到底面的距离。例如:正方体中的点,其投影为,而所以,而其到底面的距离为,故坐标为以上两个类型已经可以囊括大多数几何体中的点,但总还有一些特殊点,那么就要用到第三个方法:3、需要计算的点 中点坐标公式:,则中点,图中的等中点坐标均可计算 利用向量关系进行计算(先设再求):向量坐标化后,向量的关系也可转化为坐标的关系,进而可以求出一些位置不好的点的坐标,方法通常是先设出所求点的坐标,再选取向量,利用向量关系
5、解出变量的值,例如:求点的坐标,如果使用向量计算,则设,可直接写出,观察向量,而 , 二、典型例题:例1:在三棱锥中,平面,分别是棱的中点,试建立适当的空间直角坐标系并确定各点坐标解:平面 两两垂直以为轴建立直角坐标系坐标轴上的点: 中点:中点 中点 中点综上所述:小炼有话说:本讲中为了体现某些点坐标的来历,在例题的过程中进行详细书写。这些过程在解答题中可以省略。例2:在长方体中,分别是棱上的点,建立适当的直角坐标系并写出点的坐标思路:建系方式显而易见,长方体两两垂直,本题所给的是线段的比例,如果设等,则点的坐标都含有,不便于计算。对待此类问题可以通过设单位长度,从而使得坐标都为具体的数。解:
展开阅读全文