七年级数学上第三章-一元一次方程测试题(含知识点).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《七年级数学上第三章-一元一次方程测试题(含知识点).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 第三 一元一次方程 测试 知识点 下载 _考试试卷_数学_初中
- 资源描述:
-
1、2021-2022学年度 秋季 七年级上学期 人教版数学第三章 一元一次方程3.11一元一次方程(1)知识检测1若4xm12=0是一元一次方程,则m=_2某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,则长方形长为_cm3已知(2m3)x2(23m)x=1是关于x的一元一次方程,则m=_4下列方程中是一元一次方程的是( ) A3x+2y=5 By26y+5=0 Cx3= D4x3=05已知长方形的长与宽之比为2:1周长为20cm,设宽为xcm,得方程:_6)利润问题:利润率=如某产品进价是400元,标价为600元,销售利润为5%,设该商品x折销售,得方程( )400=5
2、%4007某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x2)6人,(x+2)4,得方程_8某农户2006年种植稻谷x亩,2007年比2006增加10%,2008年比2006年减少5%,三年共种植稻谷120亩,得方程_9一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为_10某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4元,买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把?若设中型椅子买了x把,则可列方程为_11中国人民银行宣布,从2007年6月5日起,上调人民币存款利率
3、,一年定期存款利率上调到3.06%,某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税)设到期后银行向储户支付现金x元,则所列方程正确的是( ) Ax5000=50003.06% Bx+50005%=5000(1+3.06%) Cx+50003.06%5%=5000(1+3.06%) Dx+50003.06%5%=50003.06%12足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共平x场,则得方程( ) A3x+9x=19 B2(9x)+x=19 Cx(9x)=19 D3(9x)+x=19
4、13已知方程(m2)x|m|1+3=m5是关于x的一元一次方程,求m的值,并写出其方程拓展提高14小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料?3.1.1 从算式到方程(2)基础检测1写出一个以x=1为根的一元一次方程_2(教材变式题)数0,1,2,1,2中是一元一次方程7x10=+3的解的数是_3下列方程的解正确的是( ) Ax3=1的解是x=2 Bx2x=6的解是x=4 C3x4=(x3)的解是x=3 Dx=2的解是x=4(探究过程题)先列方程,再估算出方程解 HB型铅笔每支0.3元,
5、2B型铅笔每支0.5元,用4元钱买了两种铅笔共10支,还多0.2元,问两种铅笔各买了多少支? 解答:设买了HB型铅笔x支,则买2B型铅笔_支,HB型铅笔用去了0.3x元,2B型铅笔用去了(10x)0.5元,依题意得方程, 0.3x+0.5(10x)=_ 这里x0,列表计算x(支)123456780.3x+0.5(10x)(元)4.84.64.44.243.83.63.4 从表中看出x=_是原方程的解 反思:估算问题一般针对未知数是_的取值问题,如购买彩电台数,铅笔支数等5x=1,2,0中是方程x+9=3x+2的解的是_6若方程ax+6=1的解是x=1,则a=_7在方程:3x4=1;=3;5x2
6、=3;3(x+1)=2(2x+1)中,解为x=1的方程是( ) A B C D8若“”是新规定的某种运算符号,得xy=x2+y,则(1)k=4中k的值为( ) A3 B2 C1 D39用方程表示数量关系: (1)若数的2倍减去1等于这个数加上5 (2)一种商品按成本价提高40%后标价,再打8折销售,售价为240元,设这件商品的成本价为x元 (3)甲,乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,设乙的速度为x千米/时拓展提高10(经典题)七年级(2)班的一个综合实践活动小组去A、B两个超市调查去年和今年“五一”期间的销售情况,下图是调查后小敏与其他两位同学进
7、行交流的情景根据他们的对话,求A,B两个超市“五一”期间的销售额(只需列出方程即可)3.1.2 等式的性质基础检测1在4x2=1+2x两边都减去_,得2x2=1,两边再同时加上_,得2x=3,变形依据是_2在x1=2中两边乘以_,得x4=8,两边再同时加上4,得x=12,变形依据分别是_3一件羽绒服降价10%后售出价是270元,设原价x元,得方程( ) Ax(110%)=270x Bx(1+10%)=270 Cx(1+10%)=x270 Dx(110%)=2704甲班学生48人,乙班学生44人,要使两班人数相等,设从甲班调x人到乙班,则得方程( )A48x=44x B48x=44+x C48x
8、=2(44x) D以上都不对5为确保信息安全,信息需要加密传输,发送方由明文密文(加密),按收方由密文明文(解密),已知加密规则为明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文为2,8,18,如果接收的密文7,18,15,则解密得到的明文为( ) A4,5,6 B6,7,2 C2,6,7 D7,2,66用等式的性质解下列方程:(1)4x7=13; (2)x2=4+x7只列方程,不求解某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?拓展提
9、高8某校一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位 (1)请在下表的空格里填写一个适当的代数式第1排座位数第2排座位数第3排座位数第4排座位数第n排座位数 12 12+a (2)已知第15排座位数是第5排座位数的2倍,列方程为_3.2 解一元一次方程(一)基础检测1当x=_时,式子4x+8与3x10相等2某个体户到农贸市场进一批黄瓜,卖掉后还剩48kg,则该个体户卖掉_kg黄瓜3甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是( ) A30岁 B20岁 C15岁 D10岁4若干本书分给某班同学,每人6本则余18本,每人7本则少24本设该班有学生x
10、人,或设共有图书y本,分别得方程( )A6x+18=7x24与 B7x24=6x+18与 C与7x+24=6x+18 D以上都不对5(教材变式题)解下列方程:(用移项,合并法)(1)0.3x+1.22x=1.227x (2)4010%x5=10020%+12x6一架飞机飞行在两个城市之间,风速为24千米/小时,顺风飞行需要2小时50分,逆风飞行需要3小时,求两个城市之间的距离7煤油连桶重8千克,从桶中倒出一半煤油后,连桶重4,5千克,求煤油和桶各多少千克?拓展提高8 2008年10月24日我国“嫦娥一号”发射成功,中国人实现千年的飞天梦想,卫星在绕地球飞行过程中进行了三次变轨,如图.已知第一次
11、变轨后的飞行周期比第二次变轨后飞行周期少8小时,而第三次飞行周期又比第二次飞行周期扩大1倍已知三次飞行周期和为88小时,求第一、二、三次轨道飞行的周期各是多少小时?3.3 解一元一次方程(二)去括号基础检测1七(一)班学生参加运土劳动,其中一部分人挑土,一部分人抬土,总共有40支扁担和60只筐,设x人抬土,用去扁担x支和x只筐挑土的人用(40x)_和(60x)_,得方程60x=2(40x),解得x=_2一个长方形的长比宽多2厘米,若把它的长和宽分别增加2厘米,面积则增加24厘米2,设原长方形宽为x厘米,可列方程_3在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚问鸡兔各有几只?
12、设鸡为x只得方程( ) A2x+4(14x)=44 B4x+2(14x)=44 C4x+2(x14)=44 D2x+4(x14)=444在甲队工作的有272人,在乙处工作的有196人,如果乙处工作的人数是甲处工作人数的,应从乙处调多少人到甲处?若设应从乙处调x人到甲处,则下列方程中正确的是( ) A272+x=(196x) B(272x)=196x C(272+x)=196+x D(272+x)=196x5甲与乙比赛登楼,他俩从36层的某大厦底层出发,当甲到达6层时,乙刚到达5层,按此速度,当甲到达顶层时,乙可达( ) A31层 B30层 C29层 D28层6一项工程,A独做10天完成,B独做
13、15天完成,若A先做5天,再A、B合做,完成全部工程的,共需( ) A8天 B7天 C6天 D5天拓展提高7(原创题)小明在汽车上,汽车匀速前进,他看到路旁公里牌上是一个两位数,一小时后,他又看见公里牌上的两位数恰好是前次两位数个、十位数字互换了一下,又过了一个小时,公里牌上是一个三位数,它是第一次看见的两位数中间加了一个零,求汽车的速度8如图所示,根据题意求解 请问,1听果奶多少钱?给你20元3.3 解一元一次方程(二)去分母基础检测1方程t=5,去分母得4t( )=20,解得t=_2方程13(4x1)=6(x1)去括号得112x+_=6x_,解为_3某学生在一次考试中,语文、数学、外语三门
14、学科的平均成绩为80分,物理、化学两门学科的平均成绩为x分,该学生这5门学科的平均成绩是82分,则x=_4方程2去分母得( ) A22(2x4)=(x7) B122(2x4)=x7 C124x8=(x7) D122(2x4)=x75与方程x=1的解相同的方程是( ) A3x2x+2=1 B3x2x+3=3 C2(x5)=1 Dx3=06某省人均耕地已从1951年的2.93亩减少到1999年的1.02亩,平均每年减少约0.04亩,若不采取措施继续按此速度减少下去,若干年后该省将无地可耕,无地可耕的情况最早会发生在( ) A2022年 B2023年 C2024年 D2025年7甲、乙两人练习赛跑,
15、甲每秒钟跑7米,乙每秒钟跑6.5米,甲让乙先跑5米,设甲出发x秒钟后,甲追上乙,则下列四个方程中不正确的是( )A7x=6.5x+5 B7x5=6.5 C(76.5)x=5 D6.5x=7x58解方程: 9一天晚上停电了,小胖点上两根粗细不同的蜡烛看书,若干分钟后,电来了,小胖将两根蜡烛同时熄灭,已知两根新蜡烛中,粗蜡烛全部点完要2h,细蜡烛要1h,开始时两根蜡烛一样长,熄灭时粗蜡烛长却是细蜡烛的2倍,问:停电多少分钟?10(经典题)为了庆祝中国足球队首次进入世界杯赛,曙光体育器材厂赠送一批足球给希望中学足球队若足球队每人领一个少6个球,每两人领一个则余6个球,问这批足球共多少个?小明领到足球
16、后十分高兴,就仔细地研究起足球上的黑白球(如图),结果发现,黑块呈五边形,白色呈六边形,黑白相间在球体上,黑块共12块,问白块有多少块?拓展提高11育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行速度为4千米/时,七(2)班的学生组成后队,速度为6千米/时,前队出发1小时后,乙队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为12千米/时,根据上面的事实提出问题并尝试去解答12(原创题)阅读下列材料再解方程: x+2=3,我们可以将x+2视为一个整体,由于绝对值为3的数有两个,所以x+2=3或x+2=3,解得x=1或5 请按照上面解法解方程xx+1
17、=13.4 实际问题与一元一次方程(1)基础检测1一商店把彩电按标价的9折出售,仍可获利20%,若该彩电的进价是2400元,则彩电的标价为_元2一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%优惠卖出)销售,结果每件服装仍可获利15元,则这种服装每件的成本价是_元3某药店经营的抗病毒药品,在市场紧缺的情况下提价100%,物价部门查处后,限定其提价的幅度只能是原价的10%,则该药品现在降价的幅度是( ) A55% B50% C90% D95%4磁悬浮列车是一种科技含量很高的新型交通工具,它具有速度快、爬坡能力强、能耗低的特点,它每个座位的平均能耗仅为飞机每个座位的平均能耗的
18、三分之一,是汽车每个座位的平均能耗的70%,那么汽车每个座位的平均能耗是飞机每个座位平均能耗的( ) A B C5某企业生产一种产品,每件成本是400元,销售价为510元,本季度销售300件,为进一步扩大市场,企业决定在降低销售价的同时降低生产成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售量将提高10%,要使销售利润保持不变,该产品每件成本应降低多少元?6某商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但是每日耗电量却为0.55度,现将A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,
19、每度电费按0.40元计算)7一商店以每3盘16元钱的价格购进一批录音带,又从另外一处以每4盘21元价格购进前一批数据加倍的录音带,如果以每3盘k元的价格全部出售可得到所投资的20%的收益,求k值拓展提高8(经典题)小刚为书房买灯,现有两种灯可供选购,其中一种是9瓦(即0.009千瓦)的节能灯,售价为49元/盏;另一种是40瓦(即0.04千瓦)的白炽灯,售价为18元/盏假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦时0.5元 (1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯的费用和用一盏白炽灯的费用(注:费用=灯的售价+电费); (2)小刚
20、想在这两种灯中选购一盏: 当照明时间是多少时,使用两种灯的费用一样多; 试用特殊值判断: 照明时间在什么范围内,选用白炽灯费用低; 照明时间在什么范围内,选用节能灯费用低 (3)小刚想在这两种灯中选购两盏:假定照明时间是3000小时,使用寿命都是2800小时,请你帮他设计费用最低的选灯方案,并说明理由3.4 实际问题与一元一次方程(2)基础检测1甲、乙两厂去年分别完成生产任务的112%和110%,共生产机床4000台,比原来两厂之和超产400台,问甲厂原来的生产任务是多少台?设甲厂原生产x台,得方程_,解得x=_台2两地相距190km,一汽车以30km/h的速度,从其中一地到另一地,当汽车出发
展开阅读全文