(物理)高考必刷题物理速度选择器和回旋加速器题含解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(物理)高考必刷题物理速度选择器和回旋加速器题含解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理 高考 必刷题 速度 选择器 回旋加速器 解析
- 资源描述:
-
1、(物理)高考必刷题物理速度选择器和回旋加速器题含解析一、速度选择器和回旋加速器1如图所示,虚线O1O2是速度选择器的中线,其间匀强磁场的磁感应强度为B1,匀强电场的场强为E(电场线没有画出)。照相底片与虚线O1O2垂直,其右侧偏转磁场的磁感应强度为B2。现有一个离子沿着虚线O1O2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。(1)求该离子沿虚线运动的速度大小v;(2)求该离子的比荷;(3)如果带电量都为q的两种同位素离子,沿着虚线O1O2射入速度选择器,它们在照相底片的落点间距大小为d,求这两种同位素离子的质量差m。【答
2、案】(1);(2);(3)【解析】【分析】【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq=B1qv解得(2)在偏转磁场中做半径为R的匀速圆周运动,所以解得(3)设质量较小的离子质量为m1,半径R1;质量较大的离子质量为m2,半径为R2根据题意R2=R1+它们带电量相同,进入底片时速度都为v,得联立得化简得2如图所示,竖直挡板MN右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E=100N/C,磁场方向垂直纸面向里,磁感应强度B=0.2T,场中A点与挡板的距离L=0.5m。某带电量q=+2.010-6C的粒子从A点以速度垂直射向挡板,恰能做匀速直线运动,打在挡板上的P1
3、点;如果仅撤去电场,保持磁场不变,该粒子仍从A点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN相切于P2点,不计粒子所受重力。求:(1)带电粒子的速度大小;(2)带电粒子的质量。【答案】(1);(2)【解析】【分析】【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有解得带电粒子的速度大小(2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有而粒子偏转90,由几何关系可知联立可得带电粒子的质量3如图所示,M、N为水平放置的两块平行金属板,板间距为L,两板间存在相互垂直的匀强电场和匀强磁场,电势差为,磁感应强度大小为.一个带正电的粒子从两板中
4、点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与ab垂直的方向由d点进入如图所示的区域(忽略电磁场的边缘效应)直线边界ab及ac在同一竖直平面内,且沿ab、ac向下区域足够大,不计粒子重力,求: (1)粒子射入金属板的速度大小;(2)若bac区域仅存在垂直纸面向内的匀强磁场罗要使粒子不从ac边界射出,设最小磁感应强度为B 1;若bac区域内仅存在平行纸面且平行ab方向向下的匀强电场,要使粒子不从ac边射出,设最小电场强度为E1.求B1与E1的比值为多少?【答案】(1)v= (2)【解析】【详解】(1)设带电粒子电荷量为q、质量为m、射入金属板速度为v,粒子做直线运动时电场力与洛伦兹力平
5、衡,根据平衡条件有:qvB0= qE0 E0 = 解得:v= (2)仅存在匀强磁场时,若带电粒子刚好不从ac边射出,则其轨迹圆与ac边相切,则 qvB1 = 得:B1= 仅存在匀强电场时,若粒子不从ac边射出,则粒子到达边界线ac且末速度也是与ac边相切,即: x=vt y=at2 qE1=ma tan30= tan30 = 得:E1= 所以: 4回旋加速器的工作原理如图甲所示,置于高真空中的D形金属盒半径为R,两盒间距很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B0的匀强磁场与盒面垂直。在下极板的圆心A处粒子源产生的粒子,质量为m电荷量为+q,在加速器中被加速,加速电压u随时间的变化关
6、系如图乙所示。加速过程中不考虑相对论效应和变化电场对磁场分布的影响。(1)粒子开始从静止被加速,估算该离子离开加速器时获得的动能Ek;(2)调节交流电的电压,先后两次的电压比为1:2,则粒子在加速器中的运动时间之比为多少?(3)带电粒子在磁场中做圆周运动的圆心并不是金属盒的圆心O,而且在不断的变动。设第一次加速后做圆周运动的圆心O1到O的距离为x1,第二次加速后做圆周运动的圆心O2到O的距离为x2,这二个距离平均值约为最后从加速器射出时圆周运动的圆心位置x,求x的值,并说明出口处为什么在A的左边;(4)实际使用中,磁感应强度B会出现波动,若在t=时粒子第一次被加速,要实现连续n次加速,求B可波
7、动的最大范围。【答案】(1);(2)2:1;(3);第一次圆周运动的圆心在A点的左边,最后一次圆周运动与左边相切,所以出口在A点的左边;(4),n=2、3【解析】【分析】根据回旋加速器原理,粒子在电场中加速,在磁场中偏转,根据轨道半径与运动周期可求运动动能及运动时间,若磁场出现波动,求出磁感强度的最大值和最小值,从而确定磁感强度的范围。【详解】(1)圆周运动的最大半径约为R离子离开加速器时获得的动能(2)设加速n次运动时间之比(3)设第一、二次圆周运动的半径为r1和r2可得第一次圆周运动的圆心在A点的左边,最后一次圆周运动与左边相切,所以出口在A点的左边。(4)设磁感应强度偏小时为B1,圆周运
8、动的周期为T1解得设磁感应强度偏大时为B2,圆周运动的周期为T2解得因此,n=2、35如图所示为回旋加速器的结构示意图,匀强磁场的方向垂直于半圆型且中空的金属盒D1和D2,磁感应强度为B,金属盒的半径为R,两盒之间有一狭缝,其间距为d,且Rd,两盒间电压为U。A处的粒子源可释放初速度不计的带电粒子,粒子在两盒之间被加速后进入D1盒中,经半个圆周之后再次到达两盒间的狭缝。通过电源正负极的交替变化,可使带电粒子经两盒间电场多次加速后获得足够高的能量。已知带电粒子的质量为m、电荷量为+q。(1)不考虑加速过程中的相对论效应和重力的影响。求粒子可获得的最大动能Ekm;若粒子第1次进入D1盒在其中的轨道
9、半径为r1,粒子第2次进入D1盒在其中的轨道半径为r2,求r1与r2之比;求粒子在电场中加速的总时间t1与粒子在D形盒中回旋的总时间t2的比值,并由此分析:计算粒子在回旋加速器中运动的时间时,t1与t2哪个可以忽略?(假设粒子在电场中的加速次数等于在磁场中回旋半周的次数);(2)实验发现:通过该回旋加速器加速的带电粒子能量达到2530MeV后,就很难再加速了。这是由于速度足够大时,相对论效应开始显现,粒子的质量随着速度的增加而增大。结合这一现象,分析在粒子获得较高能量后,为何加速器不能继续使粒子加速了。【答案】(1);, t1可以忽略;(2)见解析【解析】【分析】【详解】(1)粒子离开回旋加速
10、器前,做的还是圆周运动,由洛仑兹力提供向心力,根据牛顿第二定律可得 解得设带电粒子在两盒间加速的次数为N ,在磁场中有在电场中有第一次进入D1盒中N=1,第二次进入D1盒中N=3,可得带电粒子在电场中的加速度为所以带电粒子在电场中的加速总时间为设粒子在磁场中回旋的圈数为n,由动能定理得带电粒子回旋一圈的时间为所以带电粒子在磁场中回旋的总时间为已知可知,所以可以忽略。(2)带电粒子在磁场中做匀速圆周运动周期为对一定的带电粒子和一定的磁场来说,这个周期是不变的。如果在两盒间加一个同样周期的交变电场,就可以保证粒子每次经过电场时都能被加速,当粒子的速度足够大时,由于相对论效应,粒子的质量随速度的增加
11、而增大,质量的增加会导致粒子在磁场中的回旋周期变大,从而破坏了与电场变化周期的同步,导致无法继续加速。6回旋加速器核心部分是两个D形金属扁盒,两盒分别和一高频交流电源两极相接以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速两盒放在磁惑应强度为B的匀强磁场中磁场方向垂直于盒底面粒子源置于盒的圆心附近,若粒子源射出的粒子带电荷量为q,质量为m,粒子最大回旋半径为Rn,其运动轨迹如图所示问.(1)D形盒内有无电场?(2)粒子在盒内做何种运动?(3)所加交流电压频率应是多大粒子运动的角速度为多大?(4)粒子离开加速器时速度为多大?最大动能为多少?(5)设两D形盒间电场的电势差为U,盒间距离
12、为d,其间电场均匀,求把静止粒子加速到上述能量所需时间【答案】(1) D形盒内无电场 (2) 粒子在盒内做匀速圆周运动 (3) , (4) , (5) 【解析】【分析】【详解】(1)加速器由D形盒盒间缝隙组成,盒间缝隙对粒子加速,D形盒起到让粒子旋转再次通过盒间缝隙进行加速,要做匀速圆周运动,则没有电场电场只存在于两盒之间,而盒内无电场.(2)粒子在磁场中只受洛伦兹力作用,洛伦兹力始终与速度垂直,粒子做匀速圆周运动(3)所加交流电压频率等于粒子在磁场中的频率,根据和可得,故频率运动的角速度(4)粒子速度增加则半径增加,当轨道半径达到最大半径时速度最大,由得:则其最大动能为:(5)由能量守恒得:
13、则离子匀速圆周运动总时间为:离子在匀强电场中的加速度为: 匀加速总时间为:解得:【点睛】解决本题的关键知道回旋加速器利用磁场偏转和电场加速实现加速粒子,最大速度决定于D形盒的半径7当今医学成像诊断设备PET/CT堪称“现代医学高科技之冠”,它在医疗诊断中,常利用能放射电子的同位素碳11作为示踪原子,碳11是由小型回旋加速器输出的高速质子轰击氮14获得的加速质子的回旋加速器如图甲所示,D形盒装在真空容器中,两D形盒内匀强磁场的磁感应强度为B,两D形盒间的交变电压的大小为U若在左侧D1盒圆心处放有粒子源S不断产生质子,质子质量为m,电荷量为q质子从粒子源S进入加速电场时的初速度不计,不计质子所受重
14、力,忽略相对论效应 (1)质子第一次被加速后的速度大小v1是多大?(2)若质子在D形盒中做圆周运动的最大半径为R,且D形盒间的狭缝很窄,质子在加速电场中的运动时间可忽略不计那么,质子在回旋加速器中运动的总时间t总是多少?(3)要把质子从加速器中引出,可以采用静电偏转法引出器原理如图乙所示,一对圆弧形金属板组成弧形引出通道,内、外侧圆弧形金属板分别为两同心圆的一部分,圆心位于O点内侧圆弧的半径为r0,外侧圆弧的半径为r0d在内、外金属板间加直流电压,忽略边缘效应,两板间产生径向电场,该电场可以等效为放置在O处的点电荷Q在两圆弧之间区域产生的电场,该区域内某点的电势可表示为k (r为该点到圆心O点
15、的距离)质子从M点进入圆弧通道,质子在D形盒中运动的最大半径R对应的圆周与圆弧通道正中央的圆弧相切于M点若质子从圆弧通道外侧边缘的N点射出,则质子射出时的动能Ek是多少?要改变质子从圆弧通道中射出时的位置,可以采取哪些办法?【答案】(1)(2) (3)kQq【解析】【详解】(1)质子第一次被加速,由动能定理:qUmv12解得:v1(2)质子在磁场中做圆周运动时,洛伦兹力提供向心力:qvBm质子做圆周运动的周期为:T设质子从D形盒射出前被电场加速了n次,由动能定理:nqUmv2质子在磁场中做圆周运动的周期恒定,在回旋加速器中运动的总时间为:t总T解得:t总(3)设M、N两点的电势分别为1、2,则
16、1k,2k由能量守恒定律得q1mv2q2Ek解得:EkkQq改变圆弧通道内、外金属板间所加直流电压的大小(改变圆弧通道内电场的强弱),或者改变圆弧通道内磁场的强弱,可以改变质子从圆弧通道中射出的位置8正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D型盒的边缘引出后注入到正负电子对撞机中正、负电子对撞机置于真空中在对撞机中正、负电子对撞后湮灭成为两个同频率的光子回旋加速器D型盒中的匀强磁场的磁感应强度为,回旋加速器的半径为R,加速电压为U;D型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计电子的质量为m、电量为e,重力不计真空中的光速为c,普朗克常量为h(1)求正、负电子进入
17、对撞机时分别具有的能量E及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D型盒间的电场对电子做功的平均功率 (3)图甲为正负电子对撞机的最后部分的简化示意图位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁即图中的A1、A2、A4An共有n个,均匀分布在整个圆环上每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下磁场区域的直径为d改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度经过精确调整,首先实现电子在环形管道中沿图
18、甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示这就为进一步实现正、负电子的对撞做好了准备求电磁铁内匀强磁场的磁感应强度B大小【答案】(1) , ;(2) ;(3)【解析】【详解】解:(1)正、负电子在回旋加速器中磁场里则有: 解得正、负电子离开回旋加速器时的速度为:正、负电子进入对撞机时分别具有的能量: 正、负电子对撞湮灭时动量守恒,能量守恒,则有:正、负电子对撞湮灭后产生的光子频率: (2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速次,则有: 解得: 正、负电子在磁场中运动的周期为: 正、负电子在磁场中运动的时间为:
19、D型盒间的电场对电子做功的平均功率: (3)设电子在匀强磁场中做圆周运动的半径为,由几何关系可得解得: 根据洛伦磁力提供向心力可得:电磁铁内匀强磁场的磁感应强度大小:9(12分) 回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场,D形盒中央为质子流,D形盒的交流电压为U,静止质子经电场加速后,进入D形盒,其最大轨道半径为R,磁场的磁感应强度为B,质子质量为m.电荷量为q,求:(1)交流电源的频率是多少(2)质子经回旋加速器最后得到的最大动能多大;(3
20、)质子在D型盒内运动的总时间t(狭缝宽度远小于R,质子在狭缝中运动时间不计)【答案】(1) (2) (3)【解析】试题分析:(1)根据回旋加速器的原理,每转一周粒子被加速两次,交流电完成一次周期性变化,粒子作圆周运动的周期 (2分)所以,交流电源的频率得: (2分)(2)质子加速后的最大轨道半径等于D型盒的半径,由洛伦兹力提供向心力得粒子的最大运行速度; (2分)质子获得的最大动能:,得 (2分)(3)质子每个周期获得的动能为: (1分)经过的周期个数为: (1分)质子在D型盒内运动的总时间: (1分)即 (1分)考点:回旋加速器。【名师点睛】回旋加速器是通过多次加速来获得高能粒子的装置,在D
展开阅读全文