(物理)物理带电粒子在磁场中的运动练习题含答案及解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(物理)物理带电粒子在磁场中的运动练习题含答案及解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理 带电 粒子 磁场 中的 运动 练习题 答案 解析
- 资源描述:
-
1、(物理)物理带电粒子在磁场中的运动练习题含答案及解析一、带电粒子在磁场中的运动专项训练1如图所示,虚线MN沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B的匀强磁场,虚线MN的右侧区域有方向水平向右的匀强电场水平线段AP与MN相交于O点在A点有一质量为m,电量为+q的带电质点,以大小为v0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A与O点间的距离为,虚线MN右侧电场强度为,重力加速度为g求:(1)MN左侧区域内电场强度的大小和方向;(2)带电质点在A点的入射方向与AO间的夹角为多大时,质点在磁场中刚好运动到O点,并画出带电质点在磁场
2、中运动的轨迹;(3)带电质点从O点进入虚线MN右侧区域后运动到P点时速度的大小vp【答案】(1),方向竖直向上;(2);(3)【解析】【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE=mg,方向竖直向上;所以MN左侧区域内电场强度,方向竖直向上;(2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:,所以轨道半径;质点经过A、O两点,故质点在左侧区域做匀速圆周运动的圆心在AO的垂直平分线上,且质点从A运动到O的过程O点为最右侧;所以,粒子从A到O的运动轨迹为劣弧;又有;根据几何关系可得:带电质点
3、在A点的入射方向与AO间的夹角;根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O点的竖直分速度,水平分速度;质点从O运动到P的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动;质点运动到P点,故竖直位移为零,所以运动时间;所以质点在P点的竖直分速度,水平分速度;所以带电质点从O点进入虚线MN右侧区域后运动到P点时速度;2如图所示为电子发射器原理图,M处是电子出射口,它是宽度为d的狭缝D为绝缘外壳,整个装置处于真空中,半径为a的金属圆柱A可沿半径向外均匀发射速率为v的电子;与A同轴放置的金属网C的半
4、径为2a.不考虑A、C的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m,电荷量为e.(1)若A、C间加速电压为U,求电子通过金属网C发射出来的速度大小vC;(2)若在A、C间不加磁场和电场时,检测到电子从M射出形成的电流为I,求圆柱体A在t时间内发射电子的数量N.(忽略C、D间的距离以及电子碰撞到C、D上的反射效应和金属网对电子的吸收)(3)若A、C间不加电压,要使由A发射的电子不从金属网C射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B的最小值【答案】(1) (2) (3) 【解析】【分析】(1)根据动能定理求解求电
5、子通过金属网C发射出来的速度大小;(2)根据 求解圆柱体A在时间t内发射电子的数量N;(3)使由A发射的电子不从金属网C射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B.【详解】(1)对电子经 CA 间的电场加速时,由动能定理得解得:(2)设时间t从A中发射的电子数为N,由M口射出的电子数为n, 则解得 (3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为设此轨迹圆的半径为 ,则+解得:3“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,
6、圆心为O,外圆弧面AB的电势为,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回(1)求粒子到达O点时速度的大小;(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间
7、区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间【答案】(1);(2);(3) ;【解析】【分析】【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:(2)从AB圆弧面收集到的粒子有能打到MN板上,则上端刚好能打到MN上的粒子与MN相切,则入射的方向与OA之间的夹角是,在磁场中运动的轨迹如图甲,轨迹圆心角根据几何关系,粒子圆周运动的半径:由洛伦兹力提供向心力得:联合解得:(3)如图粒子在电场中运动的轨迹与MN相切时,切点到O点的距离最远,这是
8、一个类平抛运动的逆过程建立如图坐标.若速度与x轴方向的夹角为角4如图所示,在长度足够长、宽度d=5cm的区域MNPQ内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T水平边界MN上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C现有大量质量m=6.61027kg、电荷量q=3.21019C的带负电的粒子,同时从边界PQ上的O点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6106m/s,不计粒子的重力和粒子间的相互作用求:(1)求带电粒子在磁场中运动的半径r;(2)求与x轴负方向成60角射入的粒子在电场中运动的时间t;(3)当从MN边界上最左边射出的粒子离开磁场时
9、,求仍在磁场中的粒子的初速度方向与x轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程【答案】(1)r=0.1m (2) (3) 曲线方程为()【解析】【分析】【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得,解得(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30,粒子平行于场强方向进入电场,粒子在电场中运动的加速度粒子在电场中运动的时间解得(3)如图乙所示,由几何关系可知,从MN边界上最左边射出的粒子在磁场中运动的圆心角为60,圆心角小于60的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60,则仍在磁场中的粒子的初速度方向与x
10、轴正方向的夹角范围为3060所有粒子此时分别在以O点为圆心,弦长0.1m为半径的圆周上,曲线方程为 【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径5正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D型盒的边缘引出后注入到正负电子对撞机中正、负电子对撞机置于真空中在对撞机中正、负电子对撞后湮灭成为两个同频率的光子回旋加速器D型盒中的匀强磁场的磁感应强度为,回旋加速器的半径为
11、R,加速电压为U;D型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计电子的质量为m、电量为e,重力不计真空中的光速为c,普朗克常量为h(1)求正、负电子进入对撞机时分别具有的能量E及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D型盒间的电场对电子做功的平均功率 (3)图甲为正负电子对撞机的最后部分的简化示意图位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁即图中的A1、A2、A4An共有n个,均匀分布在整个圆环上每个电磁铁内的磁场都是匀强磁场,并且磁
12、感应强度都相同,方向竖直向下磁场区域的直径为d改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示这就为进一步实现正、负电子的对撞做好了准备求电磁铁内匀强磁场的磁感应强度B大小【答案】(1) , ;(2) ;(3)【解析】【详解】解:(1)正、负电子在回旋加速器中磁场里则有: 解得正、负电子离开回旋加速器时的速度为:正、负电子进入对撞机时分别具有的能量: 正、负电子对撞湮灭时动量守恒,能量守恒,则有:正、负电子对撞湮灭后产生的光子频
13、率: (2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速次,则有: 解得: 正、负电子在磁场中运动的周期为: 正、负电子在磁场中运动的时间为: D型盒间的电场对电子做功的平均功率: (3)设电子在匀强磁场中做圆周运动的半径为,由几何关系可得解得: 根据洛伦磁力提供向心力可得:电磁铁内匀强磁场的磁感应强度大小:6如图,平面直角坐标系中,在,y0及y-L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-Ly0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2
14、(L,0)进入磁场在磁场中的运转半径R=L(不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2);(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期【答案】(1)v0,与x成53角;(2);(3)2L;(4)【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为vy,由运动学规律知L=v0t1,L=t1可得t1=,vy=v0故粒子在P2的速度为v=v0设v与x成角,则tan=,即=53;(2)粒子从P1到P2,根据动能定理知qEL=mv2-mv02可得E=粒子在磁场中做匀速圆周运动,根据qvB=m解得:B=解得
15、:;(3)粒子在磁场中做圆周运动的圆心为O,在图中,过P2做v的垂线交y=-直线与Q点,可得:P2O=r故粒子在磁场中做圆周运动的圆心为O,因粒子在磁场中的轨迹所对圆心角=37,故粒子将垂直于y=-L直线从M点穿出磁场,由几何关系知M的坐标x=L+(r-rcos37)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=在磁场中由P2到M动时间:t2=从M运动到N,a=则t3=则一个周期的时间T=2(t1+t2+t3)=7如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为=1.01010C/kg)由静止进人电压U= 800V的加速电场,经加速后
16、沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0103T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。(1)求粒子打到荧光屏上的位置到A点的距离;(2)若撤去磁场在荧光屏左侧某区域加竖直向上匀强电场,电场左右宽度为2r,场强大小E=1.0103V/m,粒子仍打在荧光屏的同一位置,求电场右边界到屏幕MN的距离。【答案】(1)(2)【解析】【详解】(1)粒子射入O点时的速度,由动能定理得到:进入磁场后做匀速圆周运动,设圆周运动的速度偏向角为,
展开阅读全文