七年级数学竞赛培优(含解析)专题18-简单的不定方程方程组.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《七年级数学竞赛培优(含解析)专题18-简单的不定方程方程组.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七年 级数 竞赛 解析 专题 18 简单 不定 方程 方程组 下载 _竞赛_数学_初中
- 资源描述:
-
1、 18 简单的不定方程、方程组阅读与思考 如果方程(组)中,未知数的个数多于方程的个数,那么解往往有无穷多个,不能唯一确定,这样的方程(组)称为不定方程(组) 对于不定方程(组),我们常常限定只求整数解,甚至只求正整数解加上这类限制后,解可能唯一确定,或只有有限个,或无解这类问题有以下两种基本类型: 1判定不定方程(组)有无整数解或解的个数; 2如果不定方程(组)有整数解,求出其全部整数解 二元一次不定方程是最简单的不定方程,一些不定方程(组)常常转化为二元一次不定方程求其整数解 解不定方程(组),没有固定的方法可循,需具体问题具体分析,经常用到整数的整除、奇数偶数、因数分解、不等式分析、穷举
2、、分离整数、配方等知识与方法根据方程(组)的特点进行适当变形,并灵活运用相关知识与方法是解不定方程(组)的基本思路例题与求解【例1】满足 (01 998)的整数对(,)共有_对 (全国初中数学联赛试题) 解题思路:由方程特点,联想到平方差公式,利用因数分解来解答【例2】电影票有10元,15元,20元三种票价,班长用500元买了30张电影票,其中票价为20元的比票价为10元的多( ) A20张 B15张 C10张 D5张 (“希望杯”邀请赛试题) 解题思路:设购买10元,15元,20元的电影票分别为,张根据题意列方程组,整体求出的值 【例3】某人家中的电话号码是八位数,将前四位数组成的数与后四位
3、数组成的数相加得14 405,将前三位数组成的数与后五位数组成的数相加得16 970,求此人家中的电话号码 (湖北省武汉市竞赛试题) 解题思路:探索可否将条件用一个式子表示,从问题转换入手 【例4】一个盒子里装有不多于200粒棋子,如果每次2粒,3粒,4粒或6粒地取出,最终盒内都剩一粒棋子;如果每次11粒地取出,那么正好取完,求盒子里共有多少粒棋子? (重庆市竞赛试题) 解题思路:无论怎样取,盒子里的棋子数不变。恰当设未知数,把问题转化为求不定方程的正整数解【例5】 甲组同学每人有28个核桃,乙组同学每人有30个核桃,丙组同学每人有31个核桃,三组的核桃总数是365个问:三个小组共有多少名同学
4、? (海峡两岸友谊赛试题)解题思路:根据题意,列出三元一次不定方程,从运用放缩法求取值范围入手【例6】某中学全体师生租乘同类型客车若干辆外出春游,如果每辆车坐22人,就会余下1人;如果开走一辆空车,那么所有师生刚好平均分乘余下的汽车问:原先租多少辆客车和学校师生共多少人?(已知每辆车的容量不多于32人) 解题思路:设原先租客车辆,开走一辆空车后,每辆车乘坐人,根据题意列出方程求解,注意排除不符合题设条件的解能力训练A级1若,则_2已知, (0),则的值等于_31998年某人的年龄恰等于他出生的公元年数的数字和,那么他的年龄是_岁 (“希望杯”邀请赛试题)4已知,为整数,且,若,则的最大值为_
5、(全国初中数学竞赛试题)5,都是质数,则方程共有( )A1组解 B2组解 C3组解 D4组解(北京市竞赛试题)6如图,在高速公路上从3千米处开始,每隔4千米设一个速度限制标志,而且从10千米处开始每隔9千米设一个测速照相标志,则刚好在19千米处同时设置这两种标志,问下一个同时设置这两种标志的地点的千米数是( ) A32千米 B37千米 C55千米 D90千米7给出下列判断:不定方程的整数解可表示为 (为整数)不定方程无整数解不定方程无整数解其中正确的判断是( )A B C D8小英在邮局买了10元的邮票,其中面值0.10元的邮票不少于2枚,面值O.20元的邮票不少于5枚,面值0.50元的邮票不
6、少于3枚,面值2元的邮票不少于1枚,则小英最少买了( )枚邮票 A17 B18 C19 D20 (“五羊杯”邀请赛试题)9小孩将玻璃弹子装进两种盒子,每个大盒子装12颗,每个小盒子装5颗,若弹子共有99颗,所用大小盒子多于10个,问这两种盒子各有多少个?10中国百鸡问题:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡问鸡翁、鸡母、鸡雏各几何?(出自中国数学家张丘建的著作算经)11已知长方形的长、宽都是整数,且周长与面积的数值相等,求长方形的面积 (“希望杯”邀请赛试题)12已知是满足的整数,并且使二元一次方程组有整数解问:这样的整数有多少个?(“华罗庚金杯”竞赛试题)B级1如果,满
7、足,那么_ (“祖冲之杯”邀请试题)2已知,为正偶数,且,则_3一个四位数与它的四个数字之和等于1 991这个四位数是_ (重庆市竞赛试题)4城市数学邀请赛共设金、银、铜三种奖牌,组委会把这些奖牌分别装在五个盒中,每个盒中只装一种奖牌每个盒中装奖牌枚数依次是3,6,9,14,18现在知道其中银牌只有一盒,而且铜牌枚数是金牌枚数的2倍则有金牌_枚,银牌_枚,铜牌_枚5若正整数,满足,则这样的正整数对(,)的个数是( )A1个 B2个 C3个 D4个6有甲、乙、丙3种商品,单价均为整数,某人若购甲3件、乙7件、丙1件共需24元;若购甲4件、乙10件、丙l件共需33元,则此人购甲、乙、丙各1件共需(
展开阅读全文