一次函数分类汇编含答案解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一次函数分类汇编含答案解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 分类 汇编 答案 解析
- 资源描述:
-
1、一次函数分类汇编含答案解析一、选择题1一次函数 y = mx +的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A-1B3C1D- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可【详解】一次函数y=mx+|m-1|中y随x的增大而增大,m0一次函数y=mx+|m-1|的图象过点(0,2),当x=0时,|m-1|=2,解得m1=3,m2=-10(舍去)故选B【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键2某一次函数的图象经过点,且y
2、随x的增大而减小,则这个函数的表达式可能是( )ABCD【答案】B【解析】【分析】设一次函数关系式为,把(1,2)代入可得k+b=2,根据y随x的增大而减小可得k0,对各选项逐一判断即可得答案【详解】设一次函数关系式为,图象经过点,;y随x增大而减小,A.20,故该选项不符合题意,B.-20,-2+4=2,故该选项符合题意,C.30,故该选项不符合题意,D.,y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k0),当k0时,图象经过一、三、象限,y随x的增大而增大;当k0时,图象经过二、四、象限
3、,y随x的增大而减小;熟练掌握一次函数的性质是解题关键3已知点M(1,a)和点N(3,b)是一次函数y2x+1图象上的两点,则a与b的大小关系是()AabBabCabD无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k0,y随x的增大而减小解答【详解】解:k20,y随x的增大而减小,13,ab故选A【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便4已知正比例函数y=kx(k0)经过第二、四象限,点(k1,3k+5)是其图象上的点,则k的值为()A3B5C1D3【答案】C【解析】【分析】把x=k1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k1
4、,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k1),解得:k1=1,k2=5,因为正比例函数的y=kx(k0)的图象经过二,四象限,所以k0,所以k=1,故选C【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.5在同一平面直角坐标系中的图像如图所示,则关于的不等式的解为( )ABCD无法确定【答案】C【解析】【分析】求关于的不等式的解集就是求:能使函数的图象在函数的上边的自变量的取值范围【详解】解:能使函数的图象在函数的上边时的自变量的取值范围是故关于的不等式的解集为:故选:【点睛】本题考查了一次函数与一元一次
5、不等式的关系,从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合利用数形结合是解题的关键6如图,四边形的顶点坐标分别为,当过点的直线将四边形分成面积相等的两部分时,直线所表示的函数表达式为()ABCD【答案】D【解析】【分析】由已知点可求四边形ABCD分成面积;求出CD的直线解析式为y=-x+3,设过B的直线l为y=kx+b,并求出两条直线的交点,直线l与x轴的交点坐标,根据面积有,即可求k。【详解】解:由,四边形分成面积,可求的直线解析式为,设过的直线为,将点代入解析式得,直线与该直线的交
6、点为,直线与轴的交点为,或,直线解析式为;故选:D【点睛】本题考查一次函数的解析式求法;掌握平面内点的坐标与四边形面积的关系,熟练待定系数法求函数解析式的方法是解题的关键7一次函数的图象与正比例函数的图象平行且经过点A(1,-3),则这个一次函数的图象一定经过( )A第一、二、三象限B第一、三、四象限C第一、二、四象限D第二、三、四象限【答案】C【解析】【分析】由一次函数的图象与正比例函数的图象平行可得k=-6,把点A坐标代入y=-6x+b可求出b值,即可得出一次函数解析式,根据一次函数的性质即可得答案【详解】一次函数的图象与正比例函数的图象平行,k=-6,一次函数经过点A(1,-3),-3=
7、-6+b,解得:b=3,一次函数的解析式为y=-6x+3,-60,30,一次函数图象经过二、四象限,与y轴交于正半轴,这个一次函数的图象一定经过一、二、四象限,故选:C【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;当k0时,图象经过一、三象限,y随x的增大而增大;当k0时,图象经过二、四象限,y随x的增大而减小;当b0时,图象与y轴交于正半轴;当b0时,图象与y轴交于负半轴8一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是(
8、)A甲乙两地相距1200千米B快车的速度是80千米小时C慢车的速度是60千米小时D快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得出方程604+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,慢车速度为:=60(千米/小时);设快车速度为x千米/小时,由图象得:604+4x=600,解得:x=90,快车速度为90千米/小时
9、,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:小时,慢车所走路程:60 =400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.9平面直角坐标系中,点、,当时,的取值范围为( )ABCD或【答案】D【解析】【分析】根据点B的坐标特征得到点B在直线y=-x+2上,由于直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作P,如图,易得AQO=45,P与直线y=-x+2只有一个交点,根据圆外角的性质得到点B在直线y=-x+2上
10、(除Q点外),有ABO小于45,所以b0或b2【详解】解B点坐标为(b,-b+2),点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作P,如图,A(2,0),AQO=45,点B在直线y=-x+2上(除Q点外),有ABO小于45,b的取值范围为b0或b2故选D【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b)直线上任意一点的坐标都满足函数关系式y=kx+b10如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图
展开阅读全文