一次函数基础试题(卷)与答案解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《一次函数基础试题(卷)与答案解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 基础 试题 答案 解析
- 资源描述:
-
1、第12章 一次函数一填空题1(-3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为2点B(5,2)到x轴的距离是,到y轴的距离是,到原点的距离是3以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为4点P(a3,5a)在第一象限内,则a的取值X围是5小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值X围是6已知,一次函数y=kx+b(k0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:7一次函数y=(k1)x+k+1经过一、二、四象限,则k的取值
2、X围是函数y=2x+4的图象经过象限,它与两坐标轴围成的三角形面积为8一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=9若点(m,m+3)在函数y=x+2的图象上,则m=10y与3x成正比例,当x=8时,y=12,则y与x的函数解析式为11函数y=x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx112函数y=2x4,当x,y013若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=14已知函数y=(m1)+1是一次函数,则m=15如图,某公用亭打时,需付费y(元)与通话时间x(min)之间的函数关系式用图象表示为折线,
3、小文打了2分钟,需付费元,小文打了8分钟付费元16已知一次函数y=kx1,请你补充一个条件,使函数图象经过第二、三、四象限二选择题:17下列说法正确的是()A正比例函数是一次函数B一次函数是正比例函数C正比例函数不是一次函数D不是正比例函数就不是一次函数18下面两个变量是成正比例变化的是()A正方形的面积和它的边长B变量x增加,变量y也随之增加C矩形的一组对边的边长固定,它的周长和另一组对边的边长D圆的周长与它的半径19直线y=kx+b经过一、二、四象限,则k、b应满足()Ak0,b0Bk0,b0Ck0,b0Dk0,b020已知一次函数y=(m+2)x+m2m4的图象经过点(0,2),则m的值
4、是()A2B2C2或3D321若点A(2a,12a)关于y轴的对称点在第三象限,则a的取值X围是()AaBa2Ca2Da或a222下列关系式中,表示y是x的正比例函数的是()Ay=By=1Cy=x+1Dy=2x23函数y=4x2与y=4x2的交点坐标为()A(2,0)B(0,2)C(0,2)D(2,0)24在平面直角坐标系中,直线y=kx+b(k0,b0)不经过哪一象限()A第一象限B第二象限C第三象限D第四象限25一次函数y=axa(a0)的大致图象是()ABCD三、解答题26已知一次函数的图象经过点A(1,3)和点(2,3),(1)求一次函数的解析式;(2)判断点C(2,5)是否在该函数图
5、象上27如图,直线PA是一次函数y=x+1的图象,直线PB是一次函数y=2x+2的图象(1)求A、B、P三点坐标(2)求PAB的面积28已知y3与3x+1成正比例,且x=2时,y=6.5(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a,2)在这个函数的图象上,求a29如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系(1)B出发时与A相距千米(2)B出发后小时与A相遇(3)B走了一段路后,自行车发生故障,进行 修理,所用的时间是小时(4)若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇,相遇点离B的出发点千米在图中表示出这个相遇点C(5)求出
6、A行走的路程S与时间t的函数关系式(写出过程)30有一个带有进出水管的容器,每单位时间内进出的水量是一定的设从某时刻开始的4分钟内只进水,不出水,在随后的8分钟内既进水又出水,得到x(分)与水量y(升)之间的关系如图:(1)每分钟进水多少?(2)0x4时,y与x的函数关系式是什么?(3)4x12时,函数关系式是什么?(4)你能求每分钟放水多少升吗?31某单位急需用车,但又不想买车,他们准备和一个私营车主或一个国营出租车公司签订月租车合同设汽车每月行驶x千米,应付给私营车主的月费用是y1元,应付给国营出租车公司的月费用是y2元y1,y2分别与x之间的函数关系如图所示,观察图象回答下列问题:(1)
7、每月行驶的路程在什么X围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?第12章 一次函数参考答案与试题解析一填空题1(-3,4)关于x轴对称的点的坐标为,关于y轴对称的点的坐标为,关于原点对称的坐标为【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标【分析】根据在平面直角坐标系中,点关于x轴对称时,横坐标不变,纵坐标为相反数,关于y轴对称时,横坐标为相反数,纵坐标不变,关于原点对称时,横纵坐标都为相反数,即可解答本题【解答】解:在平面直角坐标系中,点关于x轴对称时,横坐标不
8、变,纵坐标为相反数,点A关于x轴对称的点的坐标是(3,4),关于y轴对称时,横坐标为相反数,纵坐标不变,点A关于y轴对称的点的坐标是(3,4),关于原点对称时,横纵坐标都为相反数,点A关于原点对称的点的坐标是(3,4)故答案为:(3,4),(3,4),(3,4)【点评】本题考查了在平面直角坐标系中,点关于x轴,y轴及原点对称时横纵坐标的符号,难度适中2点B(5,2)到x轴的距离是,到y轴的距离是,到原点的距离是【考点】勾股定理;点的坐标【分析】根据坐标的表示方法可得到点A到x轴的距离为2,到y轴的距离为5,然后根据勾股定理计算点A到原点的距离【解答】解:点A坐标为(5,2),点A到x轴的距离为
9、2,到y轴的距离为5,到原点的距离=故答案为2,5,【点评】本题考查了点的坐标:过一个点分别作x轴和y轴的垂线,垂足在x轴的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标也考查了勾股定理3以点(3,0)为圆心,半径为5的圆与x轴交点坐标为,与y轴交点坐标为【考点】直线与圆的位置关系;坐标与图形性质【分析】根据A的坐标和半径即可求出圆和x轴的交点坐标,根据勾股定理求出OD、OE,即可求出圆和y轴的交点坐标【解答】解:A的半径为5,A(3,0),53=2,5+3=8,即A和x轴的交点坐标为(2,0)和(8,0);连接AD、AE,由勾股定理得:OD=4,同理OE=4,即A和y轴的交点坐
10、标为(0,4)和(0,4);故答案为:(2,0)或(8,0);(0,4)或(0,4)【点评】本题考查了直线与圆的位置关系,坐标与图形性质,勾股定理的应用,题目比较好,难度不大4点P(a3,5a)在第一象限内,则a的取值X围是【考点】点的坐标;解一元一次不等式组【分析】根据第一象限内点的横坐标与纵坐标都是正数列出不等式组,然后求解即可【解答】解:点P(a3,5a)在第一象限内,解不等式得,a3,解不等式得,a5,所以,a的取值X围是3a5故答案为:3a5【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);
11、第二象限(,+);第三象限(,);第四象限(+,)5小华用500元去购买单价为3元的一种整体商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系是,x的取值X围是【考点】根据实际问题列一次函数关系式【专题】经济问题【分析】剩余的钱数=总钱数500x件这种商品的总价格,根据x应是正整数,且商品的总价不能超过500可得x的取值X围【解答】解:x件这种商品的总价格为3x,y=5003x,5003x0,解得x166,0x166,且x为整数故答案为:y=5003x;0x166,且x为整数【点评】本题考查了列一次函数关系式,得到剩余的钱数的等量关系是解决本题的关键;注意商品的件数应为正整数;所
12、买商品的总价钱不能超过所带的总钱数6已知,一次函数y=kx+b(k0)的图象经过点(0,2),且y随x的增大而减小,请你写出一个符合上述条件的函数关系式:【考点】一次函数的性质【专题】开放型【分析】根据题意可知k0,这时可任设一个满足条件的k,则得到含x、y、b三求知数的函数式,将(0,2)代入函数式,求得b,那么符合条件的函数式也就求出【解答】解:y随x的增大而减小k0可选取1,那么一次函数的解析式可表示为:y=x+b把点(0,2)代入得:b=2要求的函数解析式为:y=x+2【点评】本题需注意应先确定x的系数,然后把适合的点代入求得常数项7一次函数y=(k1)x+k+1经过一、二、四象限,则
13、k的取值X围是函数y=2x+4的图象经过象限,它与两坐标轴围成的三角形面积为【考点】一次函数图象与系数的关系【分析】根据一次函数y=(k1)x+k+1的图象经过第一、二、四象限判断出k的取值X围即可;求得直线y=2x+4与坐标轴的交点坐标即可求得围成的三角形的面积【解答】解:一次函数y=(k1)x+k+1经过一、二、四象限,k10,k+10,解得:1k1;函数y=2x+4中20,40,函数y=2x+4的图象经过一、二、四象限,令y=2x+4=0,解得:x=2,与x轴交于(2,0),令x=0,解得:y=4,故与y轴交于(0,4),与两坐标轴围成的面积为24=4,故答案为:1k1,一、二、四,4【
14、点评】考查了一次函数的性质,在直线y=kx+b中,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小8一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),则k=,b=【考点】待定系数法求一次函数解析式【分析】将(1,5),(0,3)代入一次函数的解析式,利用待定系数法求该函数的解析式的系数【解答】解:一次函数y=kx+b的图象经过点(1,5),交y轴于(0,3),解得故答案为:2,3【点评】本题考查了待定系数法求一次函数的解析式9若点(m,m+3)在函数y=x+2的图象上,则m=【考点】一次函数图象上点的坐标特征【分析】直接把点(m,m+3)代入直线y=x+2进行计算即可【
15、解答】解:点(m,m+3)在函数y=x+2的图象上,m+3=m+2,解得m=故答案为:【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适应此函数的解析式是解答此题的关键10y与3x成正比例,当x=8时,y=12,则y与x的函数解析式为【考点】待定系数法求一次函数解析式【专题】待定系数法【分析】因为y与3x成正比例,所以可设y=k3x即y=3kx,又因为当x=8时,y=12,则有12=38k从而可求出k的值,进而解决问题【解答】解:y与3x成正比例设y=k3x即y=3kx又当x=8时,y=1212=38kk=y与x的函数解析式为y=x【点评】此类题目可根据题意,利用
16、待定系数法建立函数关系式,然后利用方程解决问题11函数y=x的图象是一条过原点及(2,)的直线,这条直线经过第象限,当x增大时,y随之y=kx1【考点】一次函数的性质【分析】把x=2代入y=x得到y=2,然后根据一次函数性质确定直线y=x所经过的象限和增减性【解答】解:函数y=x的图象是一条过原点及(2,2)的直线,这条直线经过第二、四象限,当x增大时,y随之减小故答案为2;二、四;减小【点评】本题考查了一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降12函数y=2x4,当x,y0【考点】一次函数与一元一次不等式【分析】求出一次函数与x轴的
17、交点,然后根据k0,y随x的增大而增大解答即可【解答】解:当y=0时,2x4=0,解得x=2,k=20,y随x的增大而增大,当x2时,y0故答案为:2【点评】本题考查了一次函数的增减性,熟记一次函数y=kx+b,当k0时,y随x的增大而增大;当k0时,y随x的增大而减小是解题的关键13若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=【考点】一次函数图象上点的坐标特征【分析】先令x=0,求出y的值,再令y=0求出x的值即可得出直线与坐标轴的交点,再利用三角形的面积公式求解即可【解答】解:令x=0,则y=b;令y=0,则x=,函数y=4x+b与xy轴的交点分别为(,0)(0,b)函
18、数y=4x+b的图象与两坐标轴围成的三角形面积为6,|b|=6,解得b=4故答案为:4【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键14已知函数y=(m1)+1是一次函数,则m=【考点】一次函数的定义【专题】计算题【分析】根据一次函数的定义,令m2=1,m10即可解答【解答】若两个变量x和y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)因而有m2=1,解得:m=1,又m10,m=1【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,
展开阅读全文