复数的三角形式-课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《复数的三角形式-课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复数 三角 形式 课件
- 资源描述:
-
1、复数的三角形式复数的三角形式复数的三角形式1ppt课件复习引入新课:oxyabZ(a,b)r复数的表示的三种方法:代数式a+bi点z(a,b)向量ozZ=a+bi所对应的向量oza为复数的实部 b为复数的虚部r=a2+b2 为复数的模2ppt课件rab复数辐角的概念:以x轴的正半轴为始边,向量oz所在的射线为终边的角,XOYZ(a,b)3ppt课件rab(二)复数的三角形式:当a=rCos b=rSina+bi=rCos+iSin=r(Cos+iSin)则z=r(Cos+Sin)为复数的三角形式。XYZ(a,b)O4ppt课件复数的三角形式条件:Z=(i )r0。加号连接。Cos在前,Sin在
2、后。前后一致,可任意值。r Cos Sin+5ppt课件例1:把下列复数代数式化成三角式:i31213r解3i对应的点在第一象限3c o s26即6623iSinCosi211r解i12127c o s242对应的点在第四象限而i1474721iSinCosi6ppt课件想一想:代数式化三角式的步骤(1)先求复数的模(2)决定辐角所在的象限(3)根据象限求出辐角(4)求出复数三角式。小结:一般在复数三角式中的辐角,常取它的主值这既使小结:一般在复数三角式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定要主值。表达式简便,又便于运算,但三角形式辐角不一定要主值。7ppt课
3、件例2:将下列复数化为三角形式;552iSinCos43432iCosSin3321iSinCos552iSinCos59592iSinCos47472iSinCos343421iSinCos54542iSinCos8ppt课件(1)6(cos0+isin 0)(2)5(cos+isin(2)5(cos+isin)把下列复数化成三角形式:(1)6 (2)-5 (3)2i(4)-I (5)-2+2i解 2223iSinCos 23234iSinCos 4343225iSinCos(四)练习:9ppt课件例例3求复Z=1+cos+isin(2)的模与辐角主值.分析分析:式子中多3个“1”,只有将“
4、1”消去,才能更接近三角形式,因此可利用三角公式消“1”.解解:Z=1+cos+isin=1+(2cos2-1)+2isincos=2cos(cos+isin).(1)2 ,cos0(1)式右端=-2cos(-cos-isin)=-2coscos(+)+isin(+)r=-2cos +2,argZ=+10ppt课件分析与解答:分析与解答:.i1i 43i7i 43i 42i 35i 43i 42)i1)(i 41(z 又又 tg=a-1,-1tg 1,的辐角主值的辐角主值)2,474,0 .=z+ai=1-i+ai=1+(a-1)i 且且2|,2)1a(12 ,解得解得 0a2,11ppt课件
5、 此题首先要算对了,还要会算模以及辐角此题首先要算对了,还要会算模以及辐角.其中,最容其中,最容 易出问题的是易出问题的是 的范围的确定的范围的确定.仅有仅有-1tg 1 是不够的,还是不够的,还 应当注意到应当注意到=1+(a-1)i 的实部为的实部为 1,虚部,虚部 a-1 在在-1,1内,内,所以所以 所对的辐角只能在第一和第四象限所对的辐角只能在第一和第四象限.12ppt课件复数的三角形式这样,我们把 叫做复数a+bi的三角形式(cossin)ri cossin(cossin)abirirri二、复数三角形式的运算法则引入复数三角形式的一个重要原因在于用三角形式进行乘除法、乘方、开方相
6、对于代数形式较为简单。所以这里只介绍三角形式的乘法、除法、乘方与开方的运算法则。1、复数的乘法设1111(cossin)zri2222(cossin)zri那么1 2111111(cossin)(cossin)z zriri13ppt课件复数的三角形式二、复数三角形式的运算法则1、复数的乘法1 2111222(cossin)(cossin)z zriri1 212121 21212(coscossinsin)(sincoscossin)rrirr1 21212cos()sin()rri这说明,两个复数相乘等于它们的模相乘而幅角相加即1 21 21212cos()sin()z zrri这个运算在
展开阅读全文