书签 分享 收藏 举报 版权申诉 / 45
上传文档赚钱

类型利用导数探究函数的零点问题专题讲座-课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5957661
  • 上传时间:2023-05-18
  • 格式:PPT
  • 页数:45
  • 大小:3.51MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《利用导数探究函数的零点问题专题讲座-课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    利用 导数 探究 函数 零点 问题 专题讲座 课件
    资源描述:

    1、1 利用导数探究函数的零点问题专题讲座 2全国卷高考数学题展示(2014年全国卷)已知函数 ,若 存在唯一的零点 ,且 ,则 的取值范围?3231f xaxx f x0 x00 x a3 函数零点是新课标教材的新增内容之一,纵观近几年全国各地的高考试题,经常出现一些与零点有关的问题,它可以以选择题、填空题的形式出现,也可以在解答题中与其它知识交汇后闪亮登场,可以说“零点”成为了高考新的热点和亮点.高考地位一:复习旧知函数零点函数零点使函数使函数 的的实数实数方程方程 的实的实数解数解函数函数 的图像的图像与与 轴交点的横坐轴交点的横坐标标 0f x x 0f x yf xx函数与方程函数与图像

    2、函数零点函数零点使函数使函数 的的实数实数方程方程 的实的实数解数解函数函数 的图像的图像与与 轴交点的横坐轴交点的横坐标标 0f x 0f x fxx5结论结论:函数的零点就是方程函数的零点就是方程f(x)=0f(x)=0的的实数根,也就是函数实数根,也就是函数y=f(x)y=f(x)的图象与的图象与x x轴的交点的横坐标。轴的交点的横坐标。方程方程f(x)=0有实数根有实数根函数函数y=f(x)的图象与的图象与x轴有交点轴有交点函数函数y=f(x)有零点有零点6唯一)(xf在 ba,上单调0)()(bfaf)(xf在 有 ba,零点)(xf在 ba,上连续零点的存在性定理7除了用判定定理外

    3、,你还想到什么方法呢?除了用判定定理外,你还想到什么方法呢?8导数在函数零点问题上的应用导数在函数零点问题上的应用函数零点导数的应用数形结合零数零位参数范围9研究两条曲线的交点个数的基本方法研究两条曲线的交点个数的基本方法(1)数形结合法,通过画出两个函数图象,研究图形交点个数得出答案.(2)函数与方程法,通过构造函数,研究函数零点的个数得出两曲线交点的个数.1、三次函数的图象四种类型、三次函数的图象四种类型2.三次函数的零点分布三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x时,函数值也趋向,因此只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x1,x2且x1x2的

    4、函数f(x)ax3bx2cxd(a0)的零点分布情况如下:13例例1:函数函数f(x)=x3-3x2+a(aR)的零点个数的零点个数.一、三次函数的零点问题一、三次函数的零点问题14函数函数f(x)=x3-3x2+a(aR)的零点个数的零点个数.15函数函数f(x)=x3-3x2+a(aR)的零点个数的零点个数.16 已知函数已知函数f(x)=x3-x2-x+a的图象的图象与与x轴轴仅有一个交点,求实数仅有一个交点,求实数a的取值范围的取值范围.1718当x变化时,g(x)与g(x)的变化情况如下:所以,g(0)t3是g(x)的极大值,g(1)t1是g(x)的极小值.当g(0)t30,即t3时

    5、,此时g(x)在区间(,1和1,)上分别至多有1个零点,所以g(x)至多有2个零点.当g(1)t10,即t1时,此时g(x)在区间(,0)和0,)上分别至多有1个零点,所以g(x)至多有2个零点.当g(0)0且g(1)0,即3t1时,因为g(1)t70,g(2)t110,所以g(x)分别在区间1,0),0,1)和1,2)上恰有1个零点,由于g(x)在区间(,0)和(1,)上单调,所以g(x)分别在区间(,0)和1,)上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线yf(x)相切时,t的取值范围是(3,1).探究提高解决曲线的切线问题的关键是求切点的横坐标,解题时先不要管其他条件,

    6、先使用曲线上点的横坐标表达切线方程,再考虑该切线与其他条件的关系,如本题第(2)问中的切线过点(1,t).(2)证明由(1)知,f(x)x33x2x2.设g(x)f(x)kx2x33x2(1k)x4.由题设知1k0.当x0时,g(x)3x26x1k0,g(x)单调递增,g(1)k10,g(0)4,所以g(x)0在(,0有唯一实根.当x0时,令h(x)x33x24,则g(x)h(x)(1k)xh(x).h(x)3x26x3x(x2),h(x)在(0,2)单调递减,在(2,)单调递增,所以g(x)h(x)h(2)0.所以g(x)0在(0,)没有实根.综上,g(x)0在R有唯一实根,即曲线yf(x)

    7、与直线ykx2只有一个交点.探究提高研究方程的根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,这是导数这一工具在研究方程中的重要应用.25二、非三次函数的零点问题二、非三次函数的零点问题2627附:非三次函数的零点问题也是通过导数求极值来画出附:非三次函数的零点问题也是通过导数求极值来画出其图象,采用类似于三次函数的方法探究零点。其图象,采用类似于三次函数的方法探究零点。f(x)与f(x)在区间(0,)上的变化情况如下表:探究提高对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是这类问题求解的通法是:

    8、(1)构造函数,这是解决此类题的关键点和难点,并求其定义域;(2)求导数,得单调区间和极值点;(3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.321、已知函数、已知函数f(x)=x3-3ax-1,a0 (1)(1)求求f(x)的单调区间;的单调区间;(2)(2)若若f(x)在在x=-1处取得极值,直线处取得极值,直线 y=m与与y=f(x)的图象有三个不同的交点,求的图象有三个不同的交点,求m的的取值范围取值范围333439解解:(1)设曲线设曲线y=f(x)与与x轴切于点轴切于点 ,则则 ,即即 解得解得 当当 时时,x轴是轴是y=f(x)的切线的切线

    9、.3.已知函数已知函数 ,g(x)=-lnx (1)当当a为何值时为何值时,x轴为曲线轴为曲线y=f(x)的切线的切线 (2)用用minm,n表示表示m,n中的最小值中的最小值,设函数设函数 h(x)=minf(x),g(x)(x0),讨论讨论h(x)零点的个数零点的个数.41)(3 axxxf)0,(0 x 0)(0)(00 xfxf 0304120020axaxx21,430 xa43 a(2)当当x1时时,g(x)=-lnx0,从而从而h(x)=minf(x),g(x)g(x)0 故故h(x)在在 无零点无零点.),1(当当x=1时时,若若 ,则则f(1)=h(1)=minf(1),g(

    10、1)=g(1)=0,x=1是是h(x)的一个零点的一个零点 若若 ,则则h(1)=f(1)0,h(x)无零点无零点.45 a045 a45 a40当当0 x0无零点无零点,只需考虑只需考虑f(x)在在(0,1)上的零点个数上的零点个数.()当当a0时时,f(x)在在(0,1)单调递增且单调递增且f(0)0 故故f(x)(0,1)上无零点上无零点.()当当a-3时时,f(x)在在(0,1)单调递减单调递减 且且 ,f(x)在在(0,1)内仅有一个零点内仅有一个零点.axxf 23)(03)(2 axxf03)(2 axxf045)1(,041)0(aff()当当-3a0,f(x)在在(0,1)内有两个零点内有两个零点当当 时时,f(1)0,f(x)在在(0,1)内有一个零点内有一个零点.42已知函数已知函数 )0,()(23aRxxbxaxxf且当且当x=1x=1和和x=2x=2时函数取得极值(时函数取得极值(1 1)求函数的解析式)求函数的解析式(2 2)若曲线)若曲线 )(xfy与与 )02(3)(xmxxg有两个不同的交点,求实数有两个不同的交点,求实数m m的取值范围的取值范围4 4、真真 题题 感感 悟悟

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:利用导数探究函数的零点问题专题讲座-课件.ppt
    链接地址:https://www.163wenku.com/p-5957661.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库