书签 分享 收藏 举报 版权申诉 / 58
上传文档赚钱

类型信息光学-第二章-苏显渝版-作者窦柳明课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5953988
  • 上传时间:2023-05-18
  • 格式:PPT
  • 页数:58
  • 大小:3.19MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《信息光学-第二章-苏显渝版-作者窦柳明课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    信息 光学 第二 苏显渝版 作者 窦柳明 课件
    资源描述:

    1、第二章 标量的衍射理论光的衍射现象是光波动性的一主要标志,也是光在传播过程中的最重要的属性之一。本章讲述标量波衍射理论。需要指出的是,在现代衍射光学、微光学、二元光学及光子晶体分析中,常利用矢量波衍射理论。本章将在基尔霍夫标量衍射理论的基础上,研究两种最基本的衍射现象及其应用:菲涅耳衍射(近场衍射)和夫琅禾费衍射(远场衍射),并利用线性系统理论赋予新的解释,即把衍射过程看做线性不变系统,讨论其脉冲响应和传递函数。第二章第二章标量的衍射理论标量的衍射理论光波在传播过程中遇到障碍物时,发生的偏离直线传播,即光可绕过障碍物,传播到障碍物的几何阴影区域中,并在障碍物后的观察屏上呈现出光强的不均匀分布。

    2、通常将观察屏上的不均匀光强分布称为衍射图样。衍射:光波在传播过程中波面产生破缺的现象,称为衍射,这是惠更斯菲涅耳原理对圆孔、单缝、多缝等衍射问题进行解析而得出的概念。光源衍射物a?观察屏衍射图样第二章标量的衍射理论光是一种电磁波,光波的衍射问题应该通过麦克斯韦的电磁理论来求解。但是这种求解过程相当复杂,且多数不能获得解析解。现代的光学教材多使用惠更斯菲涅耳基尔霍夫标量场理论。标量场理论的适用范围:衍射孔径比照明光波波长大的多。现在一般认为,光波在传播的过程中,不论任何原因导致波前的复振幅分布(包括振幅分布和相位分布)的改变,使自由传播光场变为衍射光场的现象都称为衍射。观察点较远。标量衍射理论的

    3、核心问题:用已知的边界上的复振幅分布来表达光场中任一点的复振幅分布。第二章第二章标量的衍射理论标量的衍射理论2.3 菲涅尔衍射和夫琅和费衍射32.4 透镜的傅里叶变换性质4第二章标量的衍射理论2.1 基尔霍夫衍射理论1(解决光波的传播问题)2.2 衍射的角谱理论2(光波传播的频域描述,传递函数)重点掌握光的传播就是光的衍射过程 这一物理思想,理解角谱概念,从傅里叶光学的角度重新理解透镜这一基本光学元件的成像机理。2.1 基尔霍夫衍射理论2.1.1 惠更斯菲涅耳原理与基尔霍夫衍射公式惠更斯原理:1690年,惠更斯在其著作论光中提出假设:“波前上的每一个面元都可以看作是一个次级扰动中心,它们能产生

    4、球面子波”,并且:“后一时刻的波前的位置是所有这些子波前的包络面。”惠更斯原理能够很好地解释光的直线传播,光的反射和折射方向,也可以说明衍射的存在;但不能确定光波通过衍射屏后沿不同方向传播的振幅,因而也就无法确定衍射图样中的光强分布。惠更斯原理:任何时刻的波面上的每一点都可作为发射子波的波源,各自发出球面子波。其后任一时刻所有子波波面的包络面形成整个波动在该时刻的新波面。2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论菲涅耳1818年,在巴黎科学院举行的以解释衍射现象为内容的有奖竞赛会上,年青的菲涅耳吸收了惠更斯提出的次波概念,用“次波相干迭加”的思想将所有衍射情况引到统一的原理中来,这个原理

    5、就是惠更斯菲涅耳原理。惠更斯菲涅耳原理:光场中任一给定曲面上的诸面元可以看做是子波源,如果子波源是相干的,则在波继续传播的空间上任一点处的光振动,都可看作是这些子波源各自发出的子波在该点相干叠加的结果。2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论惠更斯-菲涅耳原理设是某光波的波阵面,在其上任一面元ds都可看作是次波的光源,各子波在空间某点的相干叠加,就决定了该点处光波的强度。?dSQPnr?dsreKPUCQUjkr?)(0惠更斯菲涅耳原理是对光的衍射现象物理规律的认识。但其数学表达式则不够精确,表达式中的一些参数也不够严格。基尔霍夫根据惠更斯菲涅耳原理,利用电磁场理论推导出了严格的衍射公

    6、式。2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论基尔霍夫衍射公式基尔霍夫衍射公式基尔霍夫的贡献:1.给出了倾斜因子2.给出了常数C的具体形式方法:将光场当作标量处理,只考虑电场的一个横向分量的标量振幅,而假定其它分量也可以用同样的方法处理,忽略电磁场矢量间的耦合特性,称之为标量衍射理论。基尔霍夫从标量波动方程剥离时间变量得到亥姆赫兹方程,利用格林定理和通过假定衍射屏的边界条件,求解了波动方程,导出了严格的衍射公式。2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论?dsrernrnreajQUjkrjkr?2,cos,cos10000慧更斯菲涅耳原理?2,cos,cos0rnrnK?jC?基

    7、尔霍夫衍射公式QP0n?r0Pr0000)(ikreraPU=位于P0处的单色点光源在平面上产生的球面波光场分布?dsreKPUCQUjkr?)(0?dsreKPUjQUjkr?)()(102.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论QP0n?r0Pr基尔霍夫衍射公式适用于任意单色光波照明孔径的情况,因为总可把任意复杂的光波分解成简单的球面波的线性叠加。讨论:2.描述衍射屏宏观光学性质的复振幅透过率1.衍射屏后表面上P点的复振幅分布衍射屏前表面上点的复振幅分布衍射屏后表面上P点的复振幅分布2.1 基尔霍夫衍射理论衍射屏后表面的复振幅,也是前表面的对于不透明屏上的开孔平面内t(P)=13.把

    8、衍射看作光振动由衍射屏后表面到观察面的自由传播.以任何方式改变波面形状,或限制波面范围,或使振幅以一定分布衰减,也可以是一定的空间分布使相位延迟,或两者兼有之,都会引起衍射,所以,衍射障碍物除屏上开的小孔外,还包含具有一定复振幅的透明片;能引起衍射的障碍物统称衍射屏。QP0n?r0Pr2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论2.1.2 惠更斯菲涅耳原理与叠加积分?dsreKPUjQUjkr?)()(10)()exp(1),(?KrjkrjQPh?dSQPhPUQU),()()(0?ddyxhfyxg),(),(),(),(),(yxhyxf?与线性系统公式比较:1.衍射系统是线性系统2

    9、.h(P,Q)的物理意义:是衍射系统的点扩展函数。光波由P点传播到Q点的过程实际上是一个衍射过程,该过程将U0(P)变换成U(Q),这等效于一个“系统”的作用,由于满足叠加积分,故此系统还是线性系统。对于这个系统,h(P,Q)表征了它的全部特性。QP0n?r0Pr2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论2.1.3 相干光场在自由空间传播的平移不变性?2,cos,cos0rnrnK?)()exp(1),(KrjkrjQPh?近轴条件下:近轴条件下:当点光源P0足够远,而且入射光在孔径平面上各点的入射角都不大。此外,如果观察平面与孔径平面的距离远大于孔径,而且在观察平面上仅考虑一个对孔径上

    10、各点张不大的范围。?1?K?1,cos1,cos0?rnrn,rjkrjQPh)exp(1),(?2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论近轴条件下zQP0n?r0Pr2120202)()(yyxxzr?rjkrjQPh)exp(1),(?=?002020200,)()(expp1,;,yyxxhyyxxzjkzjyxyxh?忽略倾斜因子的变化后,就可以把光波在衍射孔径后的传播过程看成是光波通过一个线性不变系统。?0000000,dydxyyxxhyxUyxU?yxhyxU,0?dSQPhPUQU),()()(0这表明,在满足一定条件下,衍射屏上各次波源在场点Q处所产生的复振幅分布具有

    11、相同的分布形式,只是发生了一个空间平移。也就是说,具有平移不变性。2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论2.1.4相干光场在自由空间传播的脉冲响应近似表达式?)()(expp1,2020200yyxxzjkzjyyxxh?)()(2exp)exp(,202000yyxxzkjzjjkzyyxxh?2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论菲涅耳近似在菲涅耳近似的基础上进一步限定传播距离z远远大于孔径的线度,可以忽略,而观察范围的线度与z相比尽管很小,但还未小到可以略去的程度。即:菲涅耳衍射公式菲涅耳衍射公式条件:只要使传播距离充分大于孔径的线度和观察范围的线度即可。002020

    12、000)()(2exp),()exp(),(dydxyyxxzjkyxUzjjkzyxU?22 122020200222zyxzyyxxzyxz?)()(2112020zyyzxxzr?菲涅耳近似zyx22020/)(?zyx222/)(?夫琅禾费近似2 1200222zyyxxzyxzr?远场近似2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论?expp2exppexp),;,(002200yyxxzjkyxzjkzjjkzyxyxh?夫琅禾费近似2 1200222zyyxxzyxzr?光源或接收屏距离衍射屏都相当于无限远衍射物上的入射波和衍射波都可看成平面波?满足夫琅禾费衍射均远场近似夫琅

    13、禾费近似下的脉冲响应:?000022000expexp2expexp),()exp(),(dydxyyxxzjkyxzjkyxUzjjkzyxU?不再具有空不变性质SABE光源障碍物接收屏2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论平面波入射菲涅尔衍射区夫琅禾费衍射区由于菲涅耳衍射区包含了夫琅和费衍射区,故其衍射过程的传递函数也适用于夫琅和费衍射。在衍射问题中,为了方便观测、分析计算及应用,可以把衍射光场分为三个区域:几何投影区、菲涅耳衍射区和夫琅禾费衍射区。在几何投影区,衍射现象不明显,光场的传播可以看作直线传播;从开始出现衍射现象至无限远的区域,被划分为菲涅耳衍射区;当观察屏至衍射屏的

    14、距离足够远,以致衍射场的分布不随距离的增加而明显变化,只是衍射花样的尺寸随距离增加而增大时,称为夫琅禾费衍射区。几何投影区002020000)()(2exp),()exp()(dydxyyxxzjkyxUzjjkzxU?000022000expexp2expexp),()exp(),(dydxyyxxzjkyxzjkyxUzjjkzyxU?2.1 2.1 基尔霍夫衍射理论基尔霍夫衍射理论2.2 衍射的角谱理论x0y0yxz线性平移不变系统的本征函数是:2.2.1 单色平面波与本征函数如不考虑夫琅禾费近似,相干光场在自由空间两平面间的传播是二维线性空不变系统.此式可看作是振幅为1的平面波在xy平

    15、面上形成的复振幅分布。如果把相干光场在自由空间两平面间的传播看作是通过一个二维线性空不变系统,则单色平面波在该输入平面上形成的分布即为该系统的本征函数。因为色平面波在自由空间中传播一段距离后,只是相位改变一定数值,而无其它变化,即相当于乘上一个复常数。2.2 2.2 衍射的角谱理论衍射的角谱理论孔径平面和观察平面上的光场分布都可看作是许多不同方向传播的单色光平面波分量的线性组合。每一平面波分量的相对振幅和相位取决于相应的角谱。2.2.2 2.2.2 角谱的传播孔径平面光场角谱),(000yxU)cos,cos(0A?)cos()cos()coscos(2expexp)cos,cos(),(00

    16、0000ddyxjAyxU观察平面光场角谱),(yxU)cos,cos(A)cos()cos()coscos(2expexp)cos,cos(),(?ddyxjAyxU)cos,cos(0A)cos,cos(A),(yxU),(000yxU?最后,通过傅里叶逆变换可以进而得到衍射光场分布,即空域中的衍射公式1?F?002020200,)()(expp1,;,yyxxhyyxxzjkzjyxyxh?()()(),(*),(00000000yxhyx=Udydx,y-yx-xh,yxU=x,yU 2.2 2.2 衍射的角谱理论衍射的角谱理论)cos()cos()coscos(2expexp)cos

    17、,cos(),(?ddyxjFyxf+=-(,)(,)expj2()f x yFxy d d?ddyxjGyxg?)(2expexp),(),()cos()cos()coscos(2expexp)cos,cos(),(?ddyxjGyxG+=0cos,cos)coscos1(cos,cos22222?AkAdzd由标量波动方程亥姆霍兹方程改变积分与微分的顺序,可以推导出二阶线性微分方程:?0cos,coscos,coscoscos4,cos,cos2222222?AkAdzdzA)coscos1exp(cos,coscos,cos220jkzAA?初始条件:z=0 时,(孔径平面).)cos,

    18、cos()cos,cos(0AA?该二阶常微分方程的一个基本解是?jkzCA22coscos1expcos,cos)cos,cos(?微分方程的解为:两个平行平面之间角谱传播2.2 2.2 衍射的角谱理论衍射的角谱理论)coscos1exp(cos,coscos,cos220jkzAA?两个平行平面之间角谱传播这是一个很重要的结果,它给出了两个平行平面之间角谱传播的规律?可由已知平面上的光场分布得到其角谱),(000yxU)cos,cos(0A?可以利用两个平行平面之间角谱传播的规律求出它传播到平面上的角谱zz?)cos,cos(A?再通过傅立叶逆变换求出其光场分布。),(yxU?还需要说明一

    19、点的是,两个平行平面之间角谱传播的规律也可以由平面波的复振幅传播规律直接导出。?实际上这就是自由空间衍射的数理模型,即光传播的角谱分析方法。2.2 2.2 衍射的角谱理论衍射的角谱理论这由平面波的传播性质决定。?当传播方向余弦满足时:经过距离 的传播振幅不发生变化,只是改变了各个角谱分量的相对位相,引入了一个位相延迟因子:z?cos,cos?coscos)coscos12exp(22?zj?对于的情况,角谱传播公式中的平方根是虚数,得到:?coscos?zAA?exp)cos,cos()cos,cos(?其中是个正数,因此说明一切满足的波动分量,将随 的增大而按指数衰减。在几个波长的距离内很快

    20、衰减到零。称为倏逝波。?coscosk?coscosz?z?exp)coscos1exp(cos,coscos,cos220jkzAA?两个平行平面之间角谱传播2.2 2.2 衍射的角谱理论衍射的角谱理论)coscos1exp(cos,coscos,cos220jkzAA?cos,cos?表征系统频谱特性的传递函数:?2201exp),(),(,jkzAAH?他其011exp,22222jkzH?A,系统的输出频谱?A,0系统的输入频谱?2201exp),(,jkzAA?HAA,),(,0?2.2 2.2 衍射的角谱理论衍射的角谱理论因而,可以把光波的传播现象看作一个空间滤波器。它具有有限的带

    21、宽。在频率平面上的半径为1/的圆形区域内,传递函数的模为1,对各频率分量的振幅没有影响。?他其011exp,22222jkzH对空域中比波长还要小的精细结构,或者说空间频率大于1/的信息,在单色光照明下不能沿Z方向向前传递。光在自由空间传播时,携带信息的能力是有限的。2.2 2.2 衍射的角谱理论衍射的角谱理论基尔霍夫理论空域球面子波频域角谱理论平面波系统的脉冲响应:球面子波在观察平面上的复振幅分布系统的传递函数:脉冲响应的傅立叶变换观测面:许多不同权重因子的球面子波的相干叠加。球面子波的复振幅分布就是脉冲响应。观测面:仍是平面波分量的相干叠加,但每个平面波分量引入了相移。相移大小由传递函数决

    22、定。描述球面子波相干叠加的衍射理论衍射的平面波理论把孔径平面上的光场看作是许多不同方向传播的平面波的线性组合.把孔径平面上的光场看作是点光源集合?H,?yxh,?F2.2 2.2 衍射的角谱理论衍射的角谱理论2.2.3 孔径对角谱的影响如图所示,在平面处有一无穷大不透明屏,其上开一孔,该孔(衍射屏)的透射函数为:?zt(x0,y0)=1 在内0 其它入射到孔径平面的光场:Ui(x0,y0)衍射屏后表面光场U0(x0,y0)=Ut(x0,y0)=Ui(x0,y0)t(x0,y0)cos,cos()cos,cos()cos,cos(0TAAi?F频域中2.2 2.2 衍射的角谱理论衍射的角谱理论)

    23、cos,cos()cos,cos()cos,cos(0TAAi?频域中当用单位振幅平面波垂直入射时:Ui(x0,y0)=1)cos,cos()cos,cos(Ai?)cos,cos()cos,cos()cos,cos(0TA?)cos,cos(T?角谱的展宽就是在出射波中除了包含与入射光波相同方向传播的分量之外,还增加了一些与入射光波传播方向不同的平面波分量,即增加了一些高空间频率的波,这就是 衍射波。由于卷积运算具有展宽带宽的性质,因此,在空域中孔径的作用是限制波面的大小,在频域中其作用是展宽了光波的角谱。2.2 2.2 衍射的角谱理论衍射的角谱理论2.3 菲涅尔衍射和夫琅禾费衍射基尔霍夫衍

    24、射公式是一般公式,直接用来计算困难很大,具有实用意义的是对它作一些近似处理,按近似程度不同分为菲涅尔衍射和夫琅和费衍射。平面波入射菲涅尔衍射夫琅禾费衍射2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射?dsrernrnreajQUjkrjkr?2,cos,cos10000?1?K近轴条件下:rjkrjQPh)exp(1),(?002020200,)()(expp1,;,yyxxhyyxxzjkzjyxyxh?0000000,dydxyyxxhyxUyxU?20202)()(yyxxzr?基尔霍夫衍射公式2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射2.3.1 菲涅耳衍

    25、射公式002020000)()(2exp),()exp(),(dydxyyxxzjkyxUzjjkzyxU?近似条件也可表为:充分但非必要条件在一般问题中,菲涅尔衍射很容易实现空域表达式?002020200,)()(expp1,;,yyxxhyyxxzjkzjyxyxh?2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射用角谱理论推导菲涅耳衍射?HAAcos,coscos,coscos,cos0)coscos1exp(cos,cos22jkzH?时当1coscos22?菲涅尔近似2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射)coscos1exp(cos,cos22jk

    26、zH?HAAcos,coscos,coscos,cos0?F),(),(),(0yxhyxUyxU?0000000),(),(),(dydxyyxxhyxUyxU?2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射0000000),(),(),(dydxyyxxhyxUyxU?与基尔霍夫理论得出的菲涅耳衍射积分公式完全相同)(2expp)exp(),(220yxzjkzjjkzyxU?)(2expp),()exp(220yxzjkyxUzjjkz?),(),(0yxhyxU?2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射00202000)()(exp),()exp(),

    27、(dydxyyxxzjyxUzjjkzyxU?由菲涅耳衍射的空域表达式:把指数中的二次项展开,还可表示为?)(2expp),()(2expp)exp(),(202000022yxzkjyxUyxzkjzjjkzyxU F00002020)(2expexp)(2expexpdydxyzyxzxjyxzkj?即把菲涅耳衍射看作是下式的傅里叶变换:zyzx?,?),()(2expexp)exp(),(00022yxUyxzkjzjjkzyxU?2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射2.3.2 泰伯效应设有一一维周期性物体,其复振幅透过率为:当单色平面波垂直照明一个具有周期性透过

    28、率的函数的图片时,发现在该透明片后的某些距离上出现该周期函数的像,这种现象称为泰伯效应。)2exp()(000?nnxdnjCxg?,2,1,0?n为周期d用单位振幅的平面波垂直照明,紧靠物体后的光场分布)2exp()(000?nnxdnjCxg?,2,1,0?n看作频率取离散值(n/d,0)的无穷多个平面波的叠加,Cn代表相对振幅和相位分布。2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射从频域讨论与物平面相距为Z的观察平面上的光场分布)2exp()(000?nnxdnjCxg?F?nndnCG)()(0观察屏得到的频谱为:菲涅耳衍射传递函数:)exp()exp()(2zjjkz

    29、H?)(expexp)exp()()exp()exp()()()()(220?nnnndnzjjkzdnCzjjkzdnCHGG2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射观察屏得到的频谱为:)(expp)exp()()()()(20?nndnzjjkzdnCHGG),2,1(,22?mmdzz满足:当1)2cos()(expexp2?mdnzj?nnjkzdnCG)exp()()()exp()()(000jkzxgxg?观察到的光强20000*0)()()()(xgxgxgxI?通常当取m=1时的观察屏距离为泰伯距离。dzT22?1F说明在zT的整数倍距离上,可观察到物体的像

    30、。2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射2.3.3 夫琅和费衍射夫琅禾费近似2 1200222zyyxxzyxzr?当z进一步增大,使得满足条件:夫琅禾费衍射公式?000022000expexp2expexp),()exp(),(dydxyyxxzjkyxzjkyxUzjjkzyxU?0000000222expexp),(2expexp)exp(dydxyzyxzxjyxUyxzjkzjjkz?),(2expp)exp(00022yxUyxzjkzjjkzF?zyzx?,2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射3.能用来计算菲涅尔衍射的公式也能用来计算

    31、夫琅和费衍射,反之不能;4.菲涅尔衍射传递函数表达式仍然有效。说明:1.观察平面上的场分布正比于孔径平面上出射光场分布的傅里叶变换;2.近似条件很苛刻,可以用会聚透镜实现;夫琅禾费衍射公式?),(2expp)exp(),(00022yxUyxzjkzjjkzyxUF?2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射单缝夫琅和费衍射X光强2LS1LAEYYXX光源在透镜L1的物方焦平面接收屏在L2像方焦平面2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射?zaxcaxzkjjkzzj?sin2exp)exp(12?222sin0 sinaaxaxI xcIczzz?0si

    32、naxt xacz?FF得强度分布为:?201exp()exp()2kU xjkzjxt xj zz?F)(00 xUF?00 xt xrecta?式中,a为缝宽。单缝的复幅透过率为:单位振幅平面波垂直入射时,复振幅为:)()()(0000axrectxtxU?)(00 xUF2.32.3菲涅尔衍射和夫琅禾费衍射菲涅尔衍射和夫琅禾费衍射?),(2expp)exp(),(00022yxUyxzjkzjjkzyxUF?lxly矩孔的夫琅禾费衍射)()(),(yxlyrectlxrectyxt?振幅透射率0000000)(2exp),(),(dydxyzyxzxjyxUCyxU?000000)(2e

    33、xp)()(dydxyxjlyrectlxrectCyx?)(sin)(sinlclclClyxyx?zylzylzxlzxllClyyxxyx?)sin()sin(?zx?zy?),(sin20llcIIyx?光强?),(2exp)exp(),(00022yxUyxzjkzjjkzyxUF?2.3菲涅尔衍射和夫琅禾费衍射2.4 透镜的傅立叶变换特性要在自由空间观察到夫琅禾费衍射,条件很苛刻,可用会聚透镜来实现。在单色平面光波垂直入射衍射屏的情况下,夫琅禾费衍射就是屏函数的傅里叶变换。对透射物体进行傅里叶变换运算的物理方法就是实现它的夫琅禾费衍射。即透镜在一定条件下能实现物体的傅里叶变换,所以

    34、傅里叶变换分析法在光学中得到了广泛应用。2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性2.4.1 透镜的相位变换作用透镜厚度相当薄,以至于光线经过透镜之后的出射点和其相对应的入射点在垂直光轴方向上的位移可以忽略,即出射点和入射点同一高度.1.薄透镜波面变换的观点:发散球面波成会聚球面波几何光学的观点:点物成点像1O2O2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性2.薄透镜的相位变换作用为研究透镜对入射波面的作用,引入透镜的复振幅透过率:P2面上的场分布P1面上的场分布傍轴近似下,P1面上有:傍轴近似下,S发出的球面波在P1面上的振幅分布是均匀的,只是相位是变化的。U1(x

    35、,y)经透镜变换后向S点会聚,故P2面上有:傍轴近似下,P2面上的振幅分布是均匀的,只是相位是变化的。),(),(),(yxUyxUyxtlll?傍轴近似下发散球面波在 xy平面上产生的复振幅分布2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性)()(2exp)exp(),(20200yyxxzkjjkzzayxU?仅表示常数相位变化,不影响P1与P2上相位的相对分面,可略去。将上代入:),(),(),(yxUyxUyxtlll?此式说明了透镜是如何将一个发散球面波换成会聚球面波 透镜的相位变换作用)(2expp),(22yxfikyxtl?透镜的相位变换因子利用高斯成像公式fpq11

    36、1?2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性jk)(2expp),(22yxfikyxtl?透镜的相位变换因子讨论:1.一单位振幅平面波垂直入射情况:2.考虑透镜孔径的有限大小:孔径函数(光瞳函数):f0,正透镜,会聚f0,负透镜,发散无论U1(x,y)是球面波还是平面波,只要傍轴条件满足,就可以用此形式进行相位变换。即透镜对光波的相位变换作用是由透镜本身的性质决定而与入射波 U1(x,y)形式无关。2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性jk),(yx),(yx),(00yxSpqP?0d0?1P2PS2.4.2 透镜的傅里叶变换特性透明物的透过率为t(x0,

    37、y0)作为输入面)()(2expp)(expp20200000yxdpkjdpjkdpa?)()(2exp)exp(),(20200yyxxzkjjkzzayxU?2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性由P2面到输出面S的光场分布可由菲涅耳衍射公式求得输入平面位于透镜前,计算光源共轭面上场分布的一般公式(不考虑透镜有限孔径大小)1.输入平面位于透镜前焦面:d0=fU(x,y)与t(x,y)存在准确FT,与光源位置无关。空间频率:2.输入平面紧贴透镜:d0=0,fyfx?U(x,y)与t(x,y)无准确FT,多出一个二次相位因子。空间频率:与q有关,说明频谱在空间上能按一定比例

    38、缩放。,qyqx?2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性),(yx),(yx),(00yxSPqP?0d0?1P2PS2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性输入平面位于透镜后,计算光源共轭面上场分布的一般公式(不考虑透镜有限孔径大小)说明不管衍射物体位于何种位置,只要观察面是照明光源的共轭面,则物面(输入面)和观察面(输出面)之间的关系都是傅里叶变换关系,即观察面上的衍射场都是夫琅禾费型1),输入平面紧贴透镜:d0=0说明物从两边紧贴透镜是等价的2.4 2.4 透镜的傅立叶变换特性透镜的傅立叶变换特性2),与下式相比3.考虑孔径效应(物在透镜前,相干平行光照明)2.4 透镜的傅立叶变换特性2.4.1 透镜的一般变换特性略。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:信息光学-第二章-苏显渝版-作者窦柳明课件.ppt
    链接地址:https://www.163wenku.com/p-5953988.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库