书签 分享 收藏 举报 版权申诉 / 52
上传文档赚钱

类型下一代集成芯片介绍课件.pptx

  • 上传人(卖家):ziliao2023
  • 文档编号:5950046
  • 上传时间:2023-05-18
  • 格式:PPTX
  • 页数:52
  • 大小:6.86MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《下一代集成芯片介绍课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    下一代 集成 芯片 介绍 课件
    资源描述:

    1、IC Technology What What Will Will thethe Next Next Node Node OfferOffer Us?Us?MOORESMOORES LAWLAWTransistors per microprocessor1010109 108 107 106 105 104 197119801990200020102017Source:Karl Rupp.40 Years of Microprocessor Trend Data.2MOORES LAWDENSITY DENSITY AND COST AND COST PER FUNCTIONSource:G.

    2、Moore,Electronics,1965105104103102101051110102103104Number of Components per Integrated CircuitRelative Manufacturing Cost/Component19601965197010410310210110010-110-210-3MOORES MOORES LAW LAW IS WELL AND ALIVEDENSITYDENSITY:A NECESSARY ATTRIBUTE19701975198019851990199520002005201020152020Relative D

    3、ensityYearStandard cell inverterHigh density SRAMLogic gatesTransistor density(microprocessors)4IMAGINE:TRANSISTOR PERFORMANCE TRANSISTOR PERFORMANCE W/OW/O DENSITYDENSITY5 Not enough memory No multi-core chips No accelerators Wire delay slows big chips.6IMAGINE:TRANSISTOR PERFORMANCE TRANSISTOR PER

    4、FORMANCE W/OW/O DENSITYDENSITYTECHNOLOGY LEADERSHIPLEADERSHIPN77Worlds first 7 nmParticipated in all the products on 7 nmBest performance Highest density Extensive EUV layers Design ecosystem ready In risk productionTECHNOLOGY LEADERSHIPLEADERSHIPN7N5(P)8N3TECHNOLOGY LEADERSHIPLEADERSHIPN7N5(P)910TH

    5、E ELEPHANTELEPHANTIN THE ROOM10-1 mBacteria2 mStrand of hair0.1 mmTennis ball10 cmVirus50 nmCarbon nanotube1.2 nmFinFETWater molecule0.28 nmHHO-+Hydrogen atom0.1 nm10-2 m10-3 m10-4 m10-5 m10-6 m10-7 m10-8 m10-9 m10-10 mCONTINUOUSBENEFITSNODE AFTER NODEMOORES LAW MOORES LAW A HISTORY OF INNOVATIONSDe

    6、nnard scalingStrained Si,high-k/metal gateFinFET/DTCO11CONTINUOUSBENEFITSNODE AFTER NODEMULTIPLE ROADS MULTIPLE ROADS LEAD TO ROMEInnovations12INTEGRATING INTEGRATING CHIPS INTO SYSTEMSIt may prove to be more economical to build large systems out of smaller functions,which are separately packaged an

    7、d interconnected.The availability of large functions,combined with functional design and construction,should allow the manufacturer of large systems to design and construct a considerable variety of equipment both rapidly and economically.13Source:G.Moore,Electronics,1965CoWoSCoWoS SYSTEM INTEGRATIO

    8、NSource:2013 TSMC Technology Symposium14TSMC CoWoS fullyassembled test chip1 SoC+2 DRAMsCoWoSCoWoS SYSTEM INTEGRATION2500 mm2interposer:2 processors(600 mm2)+8 HBM DRAM15Integrated Si/Package Area,ReticleSYSTEM INTEGRATIONSYSTEM INTEGRATION TECHNOLOGIESI/O Pin Count16Package SizeInterposer Size(mm2)

    9、GP100(Courtesy of Nvidia)7V580THeterogeneous Integration (Courtesy of Xilinx)7V2000THomogeneous Integration (Courtesy of Xilinx)XCVU440(Courtesy of Xilinx)GV100(Courtesy of Nvidia)mm2CHIPLETS INTEGRATIONREDUCES REDUCES SYSTEM COST PER FUNCTION2X1X1.5X17PC/InternetMobileAI/5GMini-ComputerTransistor R

    10、adioSEMICONDUCTOR TECHNOLOGYSEMICONDUCTOR TECHNOLOGY EVOLVESEVOLVESDRIVEN BY CHANGING APPLICATION LANDSCAPEInvention of point-contact transistor1947Transistor ScalingPrinciple1974Intel 40041971Invention of IC1958Pentium CPU1995Flash Memory1984Mobile phone19734G20093GiPhone2002 2007FinFET1999GPU(21B

    11、Transistors)20175nm CMOS20207nm FinFET20182050 and beyond1815%85%8%92%20%80%MemoryComputeDeep Learning AcceleratorsIntel performance counter monitors 2 CPUs,8-cores/CPU+128GB DRAMDATA MOVEMENT DATA MOVEMENT HITS THE MEMORY WALLABUNDANT-DATA APPLICATIONS:ENERGY MEASUREMENTSSource:S.Mitra(Stanford)19R

    12、esNet-152 (CNN)AlexNet (CNN)Language Model (LSTM)Network(application)Type(LSTM/CNN)Training/InferenceModel SizeMemory Usage(GBytes)ResNet(vision)CNNTraining120 MBytes21*Inference0.12Language Model (NLP)LSTMTraining2.5 GBytes40*Inference2.5*Training memory usage:Batch size 64,word size 64-bit,memory

    13、can increase with greater batch sizes,footprint of activations,weights,errors and gradients.Source:M.Lee,W.Hwang,Prof.S.Mitra(Stanford),M.Aly(NTU,Singapore),Y.Wang,K.Akarvardar(TSMC)DEEP DEEP NEURALNEURAL NETWORKSNETWORKSREQUIRE LARGE MEMORY CAPACITY20ON-CHIP ON-CHIP SRAMSRAM CAPACITY:CAPACITY:NEVER

    14、 ENOUGH0102030405060Estimated On-chip SRAM(MB)200620182012Launch Year20092015Intel Xeon X5355NVIDIA Tesla K40NVIDIA Tesla V100Intel Xeon E7-8890 v4CPUGPU3.8 Gbytes1.4 nm nodeSource:W.Hwang,Prof.S.Mitra(Stanford)21CAN WE PUT LOTS OFMEMORY ON-CHIP?WHAT KINDS OF MEMORY,FOR WHICH APPLICATION?22Source:“I

    15、nside Volta”,Nvidia GPU Tech.Conf.,May 10,2017.Heterogeneous Integration:GPU+High Bandwidth Memory(HBM2)CoWoS ModuleSuperior processing power that equals to 100 CPUs300 B transistorsSUPER AI ACCELERATORENABLED ENABLED BYBY CoWoSCoWoS HBM2HBM2HBM2HBM2GPU23COMPUTE-MEMORYCOMPUTE-MEMORY INTEGRATIONINTEG

    16、RATIONPrinted Circuit BoardSi Logic DieOff-Chip DRAMLimited I/O Connectivity2D System(traditional baseline)24Source:W.Hwang,W.Wan,Y.Malviya,H.Li,M.Lee,M.Aly,H.-S.P.Wong,S.Mitra.Work in progress 2017 2019 w/TSMC2.5D SystemHBM-Type DRAMSi Logic DieSi InterposerMicron Scale ConnectivitySource:W.Hwang,W

    17、.Wan,Y.Malviya,H.Li,M.Lee,M.Aly,H.-S.P.Wong,S.Mitra.Work in progress 2017 2019 w/TSMC25COMPUTE-MEMORYCOMPUTE-MEMORY INTEGRATIONINTEGRATIONHBM-Type DRAMSi Logic DieTSV+Bump Connectivity (Micron Scale)3D TSV SystemSource:W.Hwang,W.Wan,Y.Malviya,H.Li,M.Lee,M.Aly,H.-S.P.Wong,S.Mitra.Work in progress 201

    18、7 2019 w/TSMC26COMPUTE-MEMORYCOMPUTE-MEMORY INTEGRATIONINTEGRATIONN3XT SystemDense ILV Connectivity(Nanometer Scale)Si Logic DieEnergy Efficient Logic(Thin Device Layers)High Density On-ChipNonvolatile MemoryHigh Speed On-Chip Nonvolatile MemoryEnergy Efficient Memory Access TransistorsNonvolatile M

    19、emory CellsSource:W.Hwang,W.Wan,Y.Malviya,H.Li,M.Lee,M.Aly,H.-S.P.Wong,S.Mitra.Work in progress 2017 2019 w/TSMC27COMPUTE-MEMORYCOMPUTE-MEMORY INTEGRATIONINTEGRATIONBottom Electrodeoxide isolationswitching regionTop Electrode phase change materialPCMPhase change memoryTop ElectrodeBottom Electrodeme

    20、tal oxideoxygen ion filamentoxygen vacancyRRAMResistive switching random access memoryfilamentBottom Electrodesolid electrolyteActive Top Electrodemetal atomsCBRAMConductive bridge random access memorySTT-MRAMSpin torque transfer magnetic random access memoryFERAMFerro-electric random access memoryF

    21、erroelectric layerp-Sin+n+Interface Layertop gateSource:H.-S.P.Wong,S.Salahuddin,Nature Nanotech(2015)“NEW”MEMORIES FORCOMPUTE-MEMORY INTEGRATIONSoft MagnetPinned Magnettunnel barrier(oxide)currentRandom access,non-volatile,no erase before write,on-chip integration282DbaselinesystemAcceleratorCoresS

    22、RAM on-chipmemoryNEW NEW MEMORYMEMORY:HIGH-BANDWIDTH,HIGH-CAPACITY,ON-CHIPSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019292DbaselinesystemOff-chip DRAM(LPDDR3)Capacity:4 GBytes Latency:50 ns BW:12 GBytes/s Read/write energy:17 pJ/bitAcceleratorCoresSRAM on-chipmemoryNEW NEW M

    23、EMORYMEMORY:HIGH-BANDWIDTH,HIGH-CAPACITY,ON-CHIPSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019302DbaselinesystemOff-chip DRAM(LPDDR3)Capacity:4 GBytes Latency:50 ns BW:12 GBytes/s Read/write energy:17 pJ/bitAcceleratorCoresSRAM on-chipmemoryNEW NEW MEMORYMEMORY:HIGH-BANDWIDTH

    24、,HIGH-CAPACITY,ON-CHIPNewsystemAcceleratorCoresSRAM on-chipmemoryOff-chip DRAM(LPDDR3)Capacity:(4 GBytes minus New Mem.Cap.)Latency:50 ns BW:12 GBytes/s Read/write energy:17 pJ/bitSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019312DbaselinesystemOff-chip DRAM(LPDDR3)Capacity:4

    25、GBytes Latency:50 ns BW:12 GBytes/s Read/write energy:17 pJ/bitAcceleratorCoresSRAM on-chipmemoryNewsystemHigh Bandwidth,High Capacityboth criticalAcceleratorCoresSRAM on-chipmemoryOff-chip DRAM(LPDDR3)Capacity:(4 GBytes minus New Mem.Cap.)Latency:50 ns BW:12 GBytes/s Read/write energy:17 pJ/bitOn-c

    26、hip New memory Capacity:sweep(up to 4 GBytes)Latency:sweep(down to 3ns)BW:sweep(up to 128 GBytes/s)Read/write energy:5 pJ/bitNEW NEW MEMORYMEMORY:HIGH-BANDWIDTH,HIGH-CAPACITY,ON-CHIPSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019325 ns memory access latency,5 pJ/bit access ene

    27、rgyNEW MEMORY ESSENTIAL REQUIREMENTON-CHIP ON-CHIP CAPACITY CAPACITY MUST MUST EXCEED EXCEED DATADATA SIZESIZEEDP benefitsLanguage model(LSTM)2.5 GByte data sizeBandwidth(GBytes/s)Bandwidth(GBytes/s)ResNet-152(CNN)120 MByte data size1.3x4.2x1.3x2.9x-3.6x120 MByte64 GBytes/s4 GByte128102.1x 8x15x 30

    28、x2.5 GByte2.1x 8x50 x100 GBytes/s1 MByte4 GByte1 MByteCapacityCapacity10128Source:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,201933ResNet-152(CNN)120 MByte data sizeBandwidth(GBytes/s)968064483216102420483072Capacity(MBytes)4096Bandwidth(GBytes/s)112128968064483216102420483072Capacit

    29、y(MBytes)4096Language model(LSTM)2.5 GByte data size12850112NEW MEMORY ESSENTIAL REQUIREMENTON-CHIP ON-CHIP CAPACITY CAPACITY MUST MUST EXCEED EXCEED DATADATA SIZESIZEEDP benefitsSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019345 ns memory access latency,5 pJ/bit access energy

    30、5 pJ/bit access energyNEW MEMORY ESSENTIAL REQUIREMENTHIGH BANDWIDTH MORE CRITICAL THANHIGH BANDWIDTH MORE CRITICAL THAN LATENCY LATENCYEDP benefitsLanguage model(LSTM)2.5 GByte data sizeBandwidth(GBytes/s)Bandwidth(GBytes/s)ResNet-152(CNN)120 MByte data size4.2x4.1x1.1x-3x20 ns64 GBytes/sLatency(ns

    31、)35012810Latency(ns)50 x20 x 35x1.1x 20 x15x 30 x10 ns100 GBytes/s350101282.4x 3.9xSource:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019355 pJ/bit access energyBandwidth(GBytes/s)1129680644832165 1040Latency(ns)80Language model(LSTM)2.5 GByte data size50128120Bandwidth(GBytes/s)Sour

    32、ce:Stanford/NTU:M.Aly,S.Mitra,TSMC:Yih(Eric)Wang,K.Akarvardar,2019361121289680644832165 1040Latency(ns)80ResNet-152(CNN)120 MByte data size4.220NEW MEMORY ESSENTIAL REQUIREMENTHIGH BANDWIDTH MORE CRITICAL THANHIGH BANDWIDTH MORE CRITICAL THAN LATENCY LATENCYEDP benefitsEnergy Execution Time1971X525X

    33、320X159X63X100100010000System-Level BenefitsWorkload:Inference on ML AcceleratorN3XTN3XT:UP TO 2,000X2,000XENERGY EFFICIENCY BENEFITS101Lang.Model(LSTM)AlexNet(CNN)Captioning(LSTM)ResNet152(CNN)VGG19(CNN)N3XT Benefits:relative to 2D Baseline System(28nm silicon CMOS,LPDDR3)Inference:16-bit data,batc

    34、h size of 1Source:Stanford/NTU:M.Aly,T.Wu,A.Bartolo,H.-S.P.Wong,S.Mitra et.al.,Proc.IEEE 201937N3XTN3XT SYSTEMSYSTEMSi Logic DieEnergy Efficient Logic(Thin Device Layers)Dense ILV Connectivity(Nanometer Scale)High Density On-ChipNonvolatile MemoryHigh Speed On-Chip Nonvolatile MemoryEnergy Efficient

    35、 Memory Access TransistorsNonvolatile Memory Cells38N3XTN3XT SYSTEMSYSTEMSi Logic DieEnergy Efficient Logic(Thin Device Layers)Dense ILV Connectivity(Nanometer Scale)High Density On-ChipNonvolatile MemoryHigh Speed On-Chip Nonvolatile MemoryEnergy Efficient Memory Access TransistorsNonvolatile Memor

    36、y Cells391D carbon nanotube(CNT)2D TMD(MoS2,WSe2,WS2)Photo credit:B.Radisavljevic et al.,Nature Nanotech.,p.147,2011NANOMETER-THIN NANOMETER-THIN TRANSISTOR CHANNEL1 nm 1 nm1101001,00010,0004Mobility(cm2/V-s)0123Channel thickness(nm)Source:S.-K.Su,L.-J.Li(TSMC),Nature Nanotech.,2019.MoS2WS2WSe2SiGeC

    37、NTFilled:electronOpen:hole40Photo credit:User Mstroeck on en.wikipedia2D 2D LAYERED MATERIALS LAYERED MATERIALS(WS2,WSe2)0.50.40.30.20.1101000Effective mass(m0)100Mobility(cm2/V-s)MoS2-eWSe2-hION(A/m)20040060080020 nm10 nmGSDGSDSource:C.-C.Cheng et al.(TSMC),Symp.VLSI Tech.201941SHORT-CHANNELSHORT-C

    38、HANNELCARBON NANOTUBE TRANSISTORS10 nm Gate Length5 nm Gate LengthVDS=-0.4VVDS=0.4VSS=70 mV/Dec70 mV/Dec10-510-610-710-8-1.00.00.5-0.5Vgs(V)Ids(A)10-510-610-710-8-1.00.5-0.50.0Vgs Vt(V)Ids(A)10-910-10VDS=-0.1 VSS=73 mV/DecLg=5 nmSource:C.Qiu,L-M.Peng(PKU),Science,201742CARBON NANOTUBECARBON NANOTUBE

    39、 COMPUTERCOMPUTERSource:M.Shulaker,H.-S.P.Wong,S.Mitra(Stanford),Nature,2013instruction fetchdata fetcharithmetic block write-back43Kbit 6T SRAM(6144 CNFETs)CARBON NANOTUBE CARBON NANOTUBE FET CMOS SRAMSource:P.Kanhaiya,M.Shulaker(MIT),Symp.VLSI Tech.,201944MEMORYMEMORY INTEGRATIONINTEGRATIONON LOGI

    40、C PLATFORMBetter transistor alone45Transistors integrated with memory in 3DMEMORYMEMORY INTEGRATIONINTEGRATIONON LOGIC PLATFORM46Normalized DensitySYSTEMSYSTEM INTEGRATIONINTEGRATIONA CONTINUUM FROM FAR BACK-END TO FRONT-ENDSource:IMECInterposerChip-on-wafer Wafer-on-waferMonolithic 3D10810710610510

    41、4103102101 10047SOCIETAL NEEDS FOR ADVANCED ADVANCED TECHNOLOGY TECHNOLOGY IS INSATIABLEADVANCEDADVANCED TECHNOLOGYTECHNOLOGY A KEY DIFFERENTIATOR48CONTINUOUSBENEFITSNODE AFTER NODEContinuous transistor&memory advancesMemory logic integrationMULTIPLE ROADS MULTIPLE ROADS LEAD TO ROMESystem integrati

    42、on withhigh connectivity4950A CALL TO ACTIONACTION:EARLY ENGAGEMENTSYSTEM TECHNOLOGYACADEMIA INDUSTRY RESEARCH51End of TalkQuestions?52CONTINUOUSBENEFITSNODE AFTER NODEContinuous transistor&memory advancesMemory logic integrationMULTIPLE ROADS MULTIPLE ROADS LEAD TO ROMESystem integration withhigh connectivityCOMMITTED TO PROVIDING THE MOSTADVANCED TECHNOLOGIES

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:下一代集成芯片介绍课件.pptx
    链接地址:https://www.163wenku.com/p-5950046.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库