书签 分享 收藏 举报 版权申诉 / 3
上传文档赚钱

类型函数图象的起源及意义参考模板范本.doc

  • 上传人(卖家):林田
  • 文档编号:5945173
  • 上传时间:2023-05-17
  • 格式:DOC
  • 页数:3
  • 大小:23KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《函数图象的起源及意义参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数 图象 起源 意义 参考 模板 范本
    资源描述:

    1、函数图象的起源及意义函数观念古代早已有之,而函数概念则是由17世纪德国著名数学家莱布尼茨提出的。起初,人们研究函数,只是对着函数解析式反反复复地算来算去。后来,法国著名数学家笛卡儿引入了平面直角坐标系,该坐标系由两个数轴组成。两个数轴互相垂直,原点重合,单位长度相等。习惯上把铅直的数轴称为y轴,水平的数轴称为x轴,y轴的上方为正方向,x轴的右方为正方向。从此,平面上的每一个点都可以用平面直角坐标系的坐标表示。直角坐标系引入后,人们发现,直角坐标系用有序数对表示点,而有序数对中的两个数恰恰可以用函数中的两个变量表示。这是数学史上的伟大创举!此后,人们就知道,函数可以通过坐标系转化成图形,从而直观

    2、地研究。数和形是数学的两大根基,以前毫不相干,正是坐标系的出现,把作为“数”的函数转化为作为“形”的图象,从此数学发展更蓬勃。令数有了几何意义,是很多高等数学的思想,如微积分中,导数的几何意义就是某函数的图象在一点上的切线的斜率。 函数图象的定义对于一个函数y=f(x),如果把其中的自变量x视为直角坐标系上的某一点的横坐标,把对应的唯一的函数值y视为此点的纵坐标,那么,这个函数y=f(x),无论x取何值,都同时确定了一个点,由于x的取值范围是无穷大,同样y也有无穷个,表示的点也就有无穷个。这些点在平面上组成的图形就是此函数的图象,简称图象。 函数图象的形状对于一个函数y=f(x),由x得到y并

    3、表示一个点,那么这无数个点在平面上是不是毫无规律呢?答案是否定的。实际上,函数的总类有很多,同一种函数的图象在人的直观上看来是相似的。例如,一次函数f(x)=kx+b的图象就是一条直线;而正比例函数f(x)=kx的图象,因为正比例函数是特殊的一次函数,所以其图象对于一次函数的图象来说也比较特殊,是一条过原点的直线;二次函数的图象是一条抛物线;反比例函数的图象是一组双曲线;正弦函数的图象称作正弦曲线,实际上是我们常说的波浪线,等等。并非所有函数的图象都是无限长的直线或曲线。有些特殊的函数,其图象是一个点,而某些规定了自变量取值范围的函数,其图象则是一线段。 函数图象的作法我们知道了函数在坐标系上

    4、对应的每个点都是有规律的。我们知道了一个函数的图象的基本形状,就可以很容易地作出这个函数的图象。如对于正比例函数,我们只需代入一个x值得到y值,便确定了一个点,把这个点与原点连起来即可成功。因为正比例函数的图象是一根过原点的直线。而一次函数则需要多找一个点,把两个点连起来就可以,因为一次函数的图象是一根直线,两点确定一根直线。非一次函数的图象比较麻烦,因为它们的图象是曲线。这时候,就要采用多点作图法。因为我们先前已经探讨过,每一种函数的图象在人的直观上都是相同的。比如作一个二次函数的图象,如果想精确些,我们就找10个点,因为二次函数的图象是一条抛物线,所以我们大致地按照抛物线的轨迹用平滑的曲线

    5、把它连起来。粗略些,可以找3个点,用平滑的曲线连起来,形状大致跟抛物线贴合即可。 函数图象的作用函数图象的出现是因为人们研究函数,从而渴望得到一种快捷方便的方式。所以函数图象的最大作用就是让人看到函数的变化,能更深入地研究。再漂亮的函数解析式,也只不过是加减乘除开方平方、abcdefxyz和0123456789掺杂而成的枯燥算式。但把函数解析式表示成图象,我们能从中获取很多信息。如从函数的升降我们可以看出,某个函数的自变量在某个取值范围内令函数值增大还是减少;对于一个二元方程组,其中的每一个方程都可以看作是一个函数,对应一个图象,这些函数的图象的交点便是方程组的解;把一个方程看作一个函数,从其图象与数轴的交点存在或不存在、交点对应的坐标值可以知道此方程有解或无解,解是多少;对于一个由曲线组成的图形,可以放入直角坐标系,解出这些曲线的函数解析式,便可以用微积分计算出此图形的面积,这是初等数学无法做到的以上所述不过是函数图象作用的凤毛麟角,而随着数学研究的深入,函数的应用也越来越广泛,而用图象研究函数是必然的。函数是一门贴和实纪的学问所以我们要认真对待!

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:函数图象的起源及意义参考模板范本.doc
    链接地址:https://www.163wenku.com/p-5945173.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库