分式方程教案完成.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分式方程教案完成.doc》由用户(hwpkd79526)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式 方程 教案 完成
- 资源描述:
-
1、分式方程应用题(2)学情分析:两班共有学生106人,大部分同学学习积极性较高,能较好地完成学习任务,但个别学生学习习惯不是很好,整体水平挺理想。两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意,粗心大意、书写不认真,不愿思考问题,上课开小差,依赖老师讲解,依赖同学的帮助,作业喜欢与同学对题。考虑到以上情况,教学目标细化,作业分层次。教学目标1、使学生理解分式方程的意义,会按一般步骤解可化为一元一次方程的分式方程.2、使学生理解增根的概念,了解增根产生的原因,知道解分式方程须验根并掌握验根的方法.重点难点使学生理解增根的概念,
2、了解增根产生的原因,知道解分式方程须验根并掌握验根的方法;让学生学习审明题意设未知数,列分式方程。情感与价值观要求 1.通过师生共同交流、探讨,使学生在掌握知识的基础上,认识事物之间的内在联系,获得成就感。 2.培养学生的创新意识和应用数学的意识。3. 在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。过程与方法(1)经历观察、猜想、归纳等探索分式乘除法运算法则的过程,使学生感知数学知识具有普遍的联系性,并熟练掌握这一法则。(2)通过适当的锻炼,能找出题目中隐含的等量关系。教具准备 : 多媒体课件、投影仪情景导入:复习解分式方程的步骤解分式方程的过程,实质上是将方程的两边乘以同一
3、个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.例1解方程:.解:方程两边同乘以(x2-1),约去分母,得x+1=2.解这个整式方程,得x=1.事实上,当x=1时,原分式方程左边和右边的分母(x1)与(x21)都是0,方程中出现的两个分式都没有意义,因此,x=1不是原分式方程的根,应当舍去.所以原分式方程无解.在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的解(或根),这种根通常称为增根.因此,在解分式方程时必须进行检验.讲解产生“增根”的原因以及验根的方法解分式方程进行检验的关键是看所
4、求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,即为增根.解方程:(1) (2)情景引入:校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?分析(1)如何设元(2)题目中有几个相等关系?(3)怎样列方程解设乙每分钟能输入x名学生的成绩,则甲每分能输入2x名学生的成绩,根据题意得. 解得x11.经检验,x11是原方程的解.
展开阅读全文