弹性力学基本概念和考点汇总(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《弹性力学基本概念和考点汇总(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性力学基本概念和考点汇总DOC 17页 弹性 力学 基本概念 考点 汇总 DOC 17
- 资源描述:
-
1、基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定(2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。(3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。(4) 平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时,由切应力互等,这样只剩下平行于xy面的三个平面应力分量,即,所以这种问题称为平面应力问题。设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体
2、力也平行于横截面且不沿长度变化,由对称性可知,根据切应力互等,。由胡克定律,又由于z方向的位移w处处为零,即。因此,只剩下平行于xy面的三个应变分量,即,所以这种问题习惯上称为平面应变问题。(5) 一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。(6) 圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。(7) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有
3、的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一、 平衡微分方程:(1) 平面问题的平衡微分方程;(记)(2) 平面问题的平衡微分方程(极坐标);1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。2、平衡方程也反映了应力分量与体力(自重或惯性力)的关系。二、 几何方程;(1) 平面问题的几何方程;(记)(2) 平面问题的几何方程(极坐标);1、几何方程反映了位移和应变之间的关系。2、当位移完全确定时,应变也确定;反之,当应变完全确定时,位移并不能确定。(刚体位移)三、 物理方程;(1) 平面应力的物理方程;(记)(2) 平面应变的物理方程;(3)
4、极坐标的物理方程(平面应力);(4) 极坐标的物理方程(平面应变);四、 边界条件;(1) 几何边界条件;平面问题: 在上;(2) 应力边界条件;平面问题:(记)(3) 接触条件;光滑接触: n为接触面的法线方向非光滑接触: n为接触面的法线方向(4) 位移单值条件;(5) 对称性条件:在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。一概念1弹性力学,也称弹性理论,是固体力学学科的一个分支。 2.固体力学包括理论力学、材料力学、结构力学、塑性力学、振动理论、
5、断裂力学、复合材料力学。3基本任务:研究由于受外力、边界约束或温度改变等原因,在弹性体内部所产生的应力、形变和位移及其分布情况等。.4研究对象是完全弹性体,包括杆件、板和三维弹性体,比材料力学和结构力学的研究范围更为广泛5.弹性力学基本方法:差分法、变分法、有限元法、实验法.6弹性力学研究问题,在弹性体内严格考虑静力学、几何学和物理学 三方面条件,在边界上考虑边界条件,求解微分方程得出较精确的解答;.7.弹性力学中的基本假定:连续性、完全弹性、均匀性、各向同性、小变形假定。8.几何方程反映的是形变分量与位移分量之间的关系。9.物理方程反映的是应力分量与形变分量之间的关系。10.平衡微分方程反映
6、的是应力分量与体力分量之间的关系。11当物体的位移分量完全确定时,形变分量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。12.边界条件表示在边界上位移与约束、或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。13圣维南原理主要内容:如果把物体表面一小部分边界上作用的外力力系,变换为分布不同但静力等效的力系(主失量相同,对同一点的主矩也相同),那么只在作用边界近处的应力有显著的改变,而在距离外力作用点较远处,其影响可以忽略不计。14. 圣维南原理的推广:如果物体一小部分边界上的面力是一个平衡力系(主失量和主矩都等于零),那么,这个面力就只会使近处产生
7、显著的应力,而远处的应力可以不计。这是因为主失量和主矩都等于零的面力,与无面力状态是静力等效的,只能在近处产生显著的应力。15.求解平面问题的两种基本方法:位移法、应力法。16.弹性力学的基本原理:解的唯一性原理解的叠加原理圣维南原理。会推导两种平衡微分方程17.逆解法步骤:(1)先假设一满足相容方程(2-25)的应力函数 (2)由式(2-24),根据应力函数求得应力分量 (3)在确定的坐标系下,考察具有确定的几何尺寸和形状的弹性体,根据主要边界上的面力边界条件(2-15)或次要边界上的积分边界条件, 分析这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决什么样的问题。(或
8、者根据已知面力确定应力函数或应力分量表达式中的待定系数18.半逆解法步骤:(1)对于给定的弹性力学问题,根据弹性体的几何形状、受力特征和变形的特点或已知的一些简单结论,如材料力学得到的初等结论,假设部分或全部应力分量的函数形式(2)按式(2-24),由应力推出应力函数f的一般形式(含待定函数项);(3)将应力函数f代入相容方程进行校核,进而求得应力函数f的具体表达形式;(4)将应力函数f代入式(2-24),由应力函数求得应力分量(5)根据边界条件确定未知函数中的待定系数;考察应力分量是否满足全填空5.平面问题的应力边界条件为计算理解7.圣维南原理的三个积分式如果给出单位宽度上面力的主矢量和主矩
9、,则三个积分边界条件变为8.艾里应力函数计算一、单项选择题(按题意将正确答案的编号填在括弧中,每小题2分,共10分)1、弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。A相容方程 B近似方法 C边界条件 D附加假定2、根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。A几何上等效 B静力上等效 C平衡 D任意3、弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A平衡方程、几何方程、物理方程完全相同 B
10、平衡方程、几何方程相同,物理方程不同 C平衡方程、物理方程相同,几何方程不同D平衡方程相同,物理方程、几何方程不同在研究方法方面:材力考虑有限体V的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。4、常体力情况下,用应力函数表示的相容方程形式为,6、设有函数,(1)判断该函数可否作为应力函数?(3分)(2)选择该函数为应力函数时,考察其在图中所示的矩形板和坐标系(见题九图)中能解决什么问题(l h)。(15分)题九图解: (1)将代入相容方程,显然满足。因此,该函数可以作为应力函数。(2)应力分量的表达式:考察边界条件:在主要边界yh/2上,应精确满足应力边界条件在次要边界x0上,
展开阅读全文