高二暑期集训专题解析版:解三角形大题专项训练(DOC 15页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二暑期集训专题解析版:解三角形大题专项训练(DOC 15页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二暑期集训专题解析版:解三角形大题专项训练DOC 15页 暑期 集训 专题 解析 三角形 专项 训练 DOC 15
- 资源描述:
-
1、专题:解三角形解答题1.【A】在b、c,向量,且。(I)求锐角B的大小; (II)如果,求的面积的最大值。 (1)解:mn 2sinB(2cos21)cos2B2sinBcosBcos2B tan2B02B,2B,锐角B(2)由tan2B B或当B时,已知b2,由余弦定理,得:4a2c2ac2acacac(当且仅当ac2时等号成立)ABC的面积SABC acsinBacABC的面积最大值为当B时,已知b2,由余弦定理,得:4a2c2ac2acac(2)ac(当且仅当ac时等号成立)ac4(2)ABC的面积SABC acsinBac2ABC的面积最大值为21.【B】在ABC中,角A、B、C所对的
2、边分别是a,b,c,且 (1)求的值;(2)若b=2,求ABC面积的最大值解:(1) 由余弦定理:conB=sin+cos2B= -(2)由 b=2, +=ac+42ac,得ac,SABC=acsinB(a=c时取等号) 故SABC的最大值为2.【A】已知a,b,c分别为ABC的三个内角A,B,C的对边,a2,且(2b)(sin Asin B)(cb)sin C,则ABC面积的最大值为_【解析】由正弦定理得(2b)(ab)(cb)c,即(ab)(ab)(cb)c,即b2c2a2bc,所以cos A,又A(0,),所以A,又b2c2a2bc2bc4,即bc4,故SABCbcsin A4,当且仅当
3、bc2时,等号成立,则ABC面积的最大值为.2.【B】 ABC的内角A,B,C的对边分别为,已知(1)求B;(2)若b2,求ABC面积的最大值【解析】(1)由已知及正弦定理得sin Asin Bcos Csin Csin B又A(BC),故sin Asin(BC)sin Bcos Ccos Bsin C由和C(0,)得sin Bcos B.又B(0,),所以B(2)ABC的面积S.由已知及余弦定理得.又,故,当且仅当时,等号成立因此ABC面积的最大值为.3.【AB】在ABC中,角A,B,C的对边分别为a,b,c,且 (I)求cosB的值; (II)若,且,求b的值.解:(I)由正弦定理得,因此
4、6分 (II)解:由,所以ac4.【AB】在ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c =,且(1) 求角C的大小; (2)求ABC的面积.解:(1) A+B+C=180 由 整理,得解 得: 5分 C=60 (2)解:由余弦定理得:c2=a2+b22abcosC,即7=a2+b2ab 由条件a+b=5得 7=253ab 5.【AB】在ABC中,已知AB2,AC3,A60.(1)求BC的长;(2)求sin 2C的值【解析】(1)由余弦定理知,BC2AB2AC22ABACcos A492237,所以BC.(2)由正弦定理知,所以sin Csin A.因为ABBC,所以C为锐
5、角,则cos C.所以sin 2C2sin Ccos C2.6.【A】在中,已知,判断该三角形的形状。【解析】把已知等式都化为角的等式或都化为边的等式。由正弦定理,即知由,得或即为等腰三角形或直角三角形6.【B】在中,分别为内角的对边,且()求的大小;()若,试判断的形状.解:()由已知,根据正弦定理得即由余弦定理得故 ()由()得又,得因为,故所以是等腰的钝角三角形。7.【A】在ABC中,已知,且cos(AB)cos C1cos 2C.(1)试确定ABC的形状;(2)求的取值范围解:(1)在ABC中,设其外接圆半径为R,根据正弦定理得,sin A,sin B,代入,得,所以b2a2ab.因为
展开阅读全文