(易错题)高中必修三数学上期中模拟试题(含答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(易错题)高中必修三数学上期中模拟试题(含答案).doc》由用户(刘殿云)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 易错题 高中 必修 数学 上期 模拟 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【易错题】高中必修三数学上期中模拟试题(含答案)一、选择题1执行右面的程序框图,若输入的分别为1,2,3,则输出的( )ABCD2一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是 ( )AP(0X2)BP(X1)CP(X=1)DP(X=2)3右边程序框图的算法思路源于我国古代数学名著九章算术中的“更相减损术”执行该程序框图,若输入分别为14,18,则输出的( ) A0B2C4D144“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在
2、研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是( )A3B4C5D65一组数据的平均数为,方差为,将这组数据的每个数都乘以得到一组新数据,则下列说法正确的是( )A这组新数据的平均数为B这组新数据的平均数为C这组新数据的方差为D这组新数据的标准差为6从区间随机抽取个数,构成个数对,其中两数的平方和小于的数对有个,则用随机模拟的方法得到的圆周率疋的近似值为( )ABCD7我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135
3、的样本,那么高一、高二、高三各年级抽取的人数分别为 ( )A45,75,15B45,45,45C45,60,30D30,90,158下面的算法语句运行后,输出的值是( )A42B43C44D459已知则的最小值是 ( )AB4CD510在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,则该45名学生的数学成绩的中位数为()A127B128C128.5D12911某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程,其中,据此模型预测广告费用为9万元时,销售轿车台数为( )广告费用(万元)23456销售轿车(台数)3461012A17B18C19
4、D2012为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入(万元)8.28.610.011.311.9支出(万元)6.27.58.08.59.8 根据上表可得回归直线方程,其中,据此估计,该社区一户收入为15万元家庭年支出为( )A11.4万元B11.8万元C12.0万元D12.2万元二、填空题13已知一组数据,则该组数据的方差是_14有一批产品,其中有件次品和件正品,从中任取件,至少有件次品的概率为_15某校高一年级有600个学生,高二年级有550个学生,高三年级有650个学生,为调查学生的视力情况,用分层抽样的方法抽取一个样本,若在高二、高三共
5、抽取了48个学生,则应在高一年级抽取学生_个16如图,四边形为矩形,以为圆心,1为半径作四分之一个圆弧,在内任作射线,则射线与线段有公共点的概率为_.17某商家观察发现某种商品的销售量与气温呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为,则实数_18已知多项式,用秦九韶算法,当时多项式的值为_19已知,取值如表,画散点图分析可知与线性相关,且求得回归方程为,则的值为_20为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)若从高校抽取的人中选2人作专题发言,则这2人都来自高校的概率_三、解答题21已知某单位甲、乙、丙三个部门的
6、员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.222019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,
7、从该单位上述员工中抽取人调查专项附加扣除的享受情况.()应从老、中、青员工中分别抽取多少人?()抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“”表示不享受.现从这6人中随机抽取2人接受采访.员工项目ABCDEF子女教育继续教育大病医疗住房贷款利息住房租金赡养老人(i)试用所给字母列举出所有可能的抽取结果;(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.23艾滋病是一种危害性极大的传染病,由感染艾滋病病毒病毒引起,它把人体免疫系统中最重要的CD4T淋巴细胞作为主要攻击目标,使人体丧失免疫功能下表是近八年来我国
8、艾滋病病毒感染人数统计表:年份20112012201320142015201620172018年份代码x12345678感染者人数单位:万人85请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;请用相关系数说明:能用线性回归模型拟合y与x的关系;建立y关于x的回归方程系数精确到,预测2019年我国艾滋病病毒感染人数参考数据:;,参考公式:相关系数,回归方程中,24“大众创业,万众创新”是李克强总理在本届政府工作报告中向全国人民发出的口号.共生产企业积极响应号召,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据,如表所示:试销单价(元
9、)456789产品销量(件)908483807568已知,.(1)已知变量,只有线性相关关系,求产品销量(件)关于试销单价(元)的线性回方程;(2)用表示用()中所求的线性回归方程得到的与对应的产品销量的估计值.当销售数据对应的差的绝对值时,则将售数数称为一个“好数据”.现从6小销售数据中任取2个;求“好数据”至少有一个的概率.(参考公式:线性回归方程中的最小二乘估计分别为,)25为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样)以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试
10、成绩(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀请填写下面的22列联表,并判断有多大把握认为“成绩优秀与教学方式有关”甲班乙班合计优秀不优秀合计参考公式:,其中参考数据:0.0500.0100.0013.8416.63510.82826某企业生产一种产品,质量测试分为:指标不小于90为一等品,不小于80小于90为二等品,小于80为三等品,每件一等品盈利50元,每件二等品盈利30元,每件三等品亏损10元,现对学徒工甲和正式工人乙生产的产品各100件的检测结果统计如下:测试指标甲515353573乙
11、3720402010根据上表统计得到甲、乙生产产品等级的频率分别估计为他们生产产品等级的概率(1)求出乙生产三等品的概率;(2)求出甲生产一件产品,盈利不小于30元的概率;(3)若甲、乙一天生产产品分别为40件和30件,估计甲、乙两人一天共为企业创收多少元?【参考答案】*试卷处理标记,请不要删除一、选择题1D解析:D【解析】【分析】【详解】试题分析:根据题意由成立,则循环,即;又由成立,则循环,即;又由成立,则循环,即;又由不成立,则出循环,输出考点:算法的循环结构2B解析:B【解析】【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P(X=1)和P(X=0),即可判断等式表示的意义【
12、详解】由题意可知 ,表示选1个白球或者一个白球都没有取得即P(X1),故选B【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数3B解析:B【解析】【分析】【详解】由a=14,b=18,ab,则b变为1814=4,由ab,则a变为144=10,由ab,则a变为104=6,由ab,则a变为64=2,由ab,则b变为42=2,由a=b=2,则输出的a=2故选B4B解析:B【解析】【分析】设这个人团队解决项目的概率为,则,由,得,由此能求出的最小值【详解】李某智商较高,他独自一人解决项目的概率为,有
13、个水平相同的人也在研究项目,他们各自独立地解决项目的概率都是0.1,现在李某单独研究项目,且这个人组成的团队也同时研究,设这个人团队解决项目的概率为,则,解得的最小值是4故选【点睛】本题考查实数的最小值的求法,考查次独立重复试验中事件恰好发生次的概率的计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题5D解析:D【解析】【分析】计算得到新数据的平均数为,方差为,标准差为,结合选项得到答案.【详解】根据题意知:这组新数据的平均数为,方差为,标准差为.故选:【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.6B解析:B【解析】【分析】根据随机模拟试验
14、的的性质以及几何概型概率公式列方程求解即可.【详解】如下图:由题意,从区间随机抽取的个数对,落在面积为4的正方形内,两数的平方和小于对应的区域为半径为2的圆内,满足条件的区域面积为,所以由几何概型可知,所以.故选:B【点睛】本题主要考查几何概型,属于中档题.7C解析:C【解析】因为共有学生2700,抽取135,所以抽样比为,故各年级分别应抽取,故选C.8C解析:C【解析】【分析】根据算法语句可知,程序实现功能为求满足不等式的解中最大自然数,即可求解.【详解】由算法语句知,运行该程序实现求不等式的解中最大自然数的功能,因为,所以,故选:C【点睛】本题主要考查算法语句,考查了对循环结构的理解,属于
展开阅读全文