(期末专项)人教版数学九年级上第24章圆解答题综合培优训练含答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(期末专项)人教版数学九年级上第24章圆解答题综合培优训练含答案.doc》由用户(吉庆会)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 期末专项 期末 专项 人教版 数学 九年级 24 解答 综合 训练 答案 下载 _九年级上册_人教版_数学_初中
- 资源描述:
-
1、【期末专项复习】第24章: 圆 解答题综合培优训练1如图,已知ABC内接于O,BC为O直径,延长AC至D,过D作O切线,切点为E,且D90,连接BEDE12,(1)若CD4,求O的半径;(2)若AD+CD30,求AC的长2如图,AB是O的直径,D是弦AC的延长线上一点,且CDAC,DB的延长线交O于点E(1)求证:CDCE;(2)连结AE,若D25,求BAE的度数3如图,AB是O的直径,弦CDAB于点E,在上取点G,连结CG,DG,AC求证:DGC2BAC4如图,在ABC中,ABAC,E在AC上,经过A,B,E三点的圆O交BC于点D,且D点是弧BE的中点,(1)求证AB是圆的直径;(2)若AB
2、8,C60,求阴影部分的面积;(3)当A为锐角时,试说明A与CBE的关系5如图,ABC中,O经过A、B两点,且交AC于点D,连接BD,DBCBAC(1)证明BC与O相切;(2)若O的半径为6,BAC30,求图中阴影部分的面积6如图,矩形ABCD中AB3,AD4作DEAC于点E,作AFBD于点F(1)求AF、AE的长;(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求A的半径r的取值范围7已知AB是O的直径,弦CD与AB相交,BAC40(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若D
3、PAC,求OCD的度数8如图,RtABC中,C90,AC,BC2AC,半径为2的C,分别交AC、BC于点D、E,得到(1)求证:AB为C的切线;(2)求图中阴影部分的面积9如图,AM为O的切线,A为切点,过O上一点B作BDAM于点D,BD交O于C,OC平分AOB(1)求AOB的度数;(2)若线段CD的长为2cm,求的长度10如图,已知O是ABC的外接圆,AC是直径,A30,BC4,点D是AB的中点,连接DO并延长交O于点P(1)求劣弧PC的长(结果保留);(2)过点P作PFAC于点F,求阴影部分的面积(结果保留)11如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在A
4、B的延长线上,射线EM经过点C,且ACE+AFO180(1)求证:EM是O的切线;(2)若AE,BC,求阴影部分的面积(结果保留和根号)12如图,ABC的三边分别切O于D,E,F(1)若A40,求DEF的度数;(2)ABAC13,BC10,求O的半径13如图,AB为O的直径,ABC的边AC,BC分别与O交于D,E,若E为的中点(1)求证:DEEC;(2)若DC2,BC6,求O的半径14如图所示,O的直径AB10cm,弦AC6cm,ACB的平分线交O于点D,(1)求证:ABD是等腰三角形;(2)求CD的长15如图,在O中,弦AD,BC相交于点E,连接OE,已知ADBC,ADCB(1)求证:ABC
5、D;(2)如果O的直径为10,DE1,求AE的长16如图,四边形ABCD是O的内接四边形,BD是ABC的角平分线,过点D分别作DEAB,DFBC,垂足分别为E、F(1)求证:AEDCFD;(2)若AB10,BC8,ABC60,求BD的长度17如图,O的直径AB的长为2,点C在圆周上,CAB30点D是圆上一动点,DEAB交CA的延长线于点E,连接CD,交AB于点F(1)如图1,当DE与O相切时,求CFB的度数;(2)如图2,当点F是CD的中点时,求CDE的面积参考答案1(1)解:连接OE,作OHAD于H,DE是O的切线,OEDE又D90,四边形OHDE是矩形,设O的半径为r,在RtOCH中,OC
6、2CH2+OH2,r2(r4)2+144,半径r20(2)解:OHAD,AHCH又AD+CD30,即:(AH+HD)+(HDCH)302HD30,HD15,即OEHDOC15,在RtOCH中,CH9AC2CH18【点评】考查了圆的切线的性质,矩形的判定和性质及垂径定理解答此类题目的关键是通过作辅助线构造直角三角形,利用勾股定理求得相关线段的长度2(1)证明:连接BC,AB是O的直径,ABC90,即BCAD,CDAC,ABBD,AD,CEBA,CEBD,CECD(2)解:连接AEA BEA+D50,AB是O的直径,AEB90,BAE905040【点评】本题考查圆周角定理,等腰三角形的判定和性质等
7、知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型3证明:连结AD,弦CD直径AB,2BAC2BADDAC(垂径定理),又DGCDAC(圆周角定理),BACDGC,DGC2BAC【点评】此题考查了垂径定理、圆周角定理此题难度不大,注意掌握辅助线的作法与数形结合思想的应用4解:(1)连结AD,D是中点,BADCAD,又ABAC,ADBD,ADB90,AB是O直径;(2)连结OE,C60,ABAB,BAC60,AOE60,BOC120,OBE30,AB8,OB4,S阴影S扇形AOE+SBOE+24+4(3)由(1)知AB是O的直径,BEA90,EBC+CCAD+C90,EBCCAD,CA
8、B2EBC【点评】本题考查了扇形面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键5证明:(1)连接BO并延长交O于点E,连接DEBE是O的直径,BDE90,EBD+E90,DBCDAB,DABE,EBD+DBC90,即OBBC,又点B在O上,BC是O的切线;(2)连接OD,BOD2A60,OBOD,BOD是边长为6的等边三角形,SBOD629,S扇形DOB6,S阴影S扇形DOBSBOD69【点评】本题考查了切线的判定,圆周角定理,扇形面积,等边三角形的性质和判定的应用,关键是求出EBD+DBC90和分别求出扇形DOB和三角形DOB的面积6解:(1)矩形ABCD中AB3,A
展开阅读全文