(精准解析)山东省枣庄市2021届高三上学期第三次质量检测数学试卷.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(精准解析)山东省枣庄市2021届高三上学期第三次质量检测数学试卷.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 精准解析 精准 解析 山东省 枣庄市 2021 届高三 上学 第三次 质量 检测 数学试卷 下载 _考试试卷_数学_高中
- 资源描述:
-
1、20202021学年高三年级第三次质量检测数学试题注意事项:1答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效3考试结束后,请将本试卷和答题卡一并交回,满分150分,考试用时120分钟一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知复数满足(其中为虚数单位),则( )A. B. C. D. 【答案】B【解析】【分析】求出,结合共轭复数的概念可求出的值.【详解】,因此,
2、.故选:B.【点睛】本题考查复数模的计算,同时也考查了共轭复数,考查计算能力,属于基础题.2. 设,则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】【分析】先化简已知,再根据集合的关系判断得解.【详解】因为,所以,设,因为,所以,设,因为是的真子集,所以“”是“”的充分不必要条件.故选:A【点睛】本题主要考查一元二次不等式和绝对值不等式的解法,考查充分必要条件的判定,考查集合的关系,意在考查学生对这些知识的理解掌握水平.3. 函数的部分图象大致为( )A. B. C. D. 【答案】B【解析】【分析】利用函数的奇偶性定义可判
3、断函数为偶函数, 排除选项,当时,可判断得出,,排除选项即可得解.【详解】函数定义域为.因为,所以函数为偶函数,函数图象关于y轴对称,排除选项.当时,所以,排除选项.故选:.【点睛】本题考查函数图象的辨识,可以从奇偶性,单调性,函数值符号,特殊值等入手,通过排除法求解,难度较易.4. 新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第天,每个检测对象从接受检测到检测报告生成平均耗时(单位:小时)大致服从的关系为(、为常数).已知第天检测过程平均耗时为小时,第天和第天检测过程平均耗时均为小时,那么可得到第天检测过程平均耗时大致为( )A
4、. 小时B. 小时C. 小时D. 小时【答案】C【解析】【分析】根据题意求得和的值,然后计算出的值即可得解.【详解】由第天和第天检测过程平均耗时均为小时知,所以,得又由知,所以当时,故选:C【点睛】本题考查分段函数模型的应用,求出和的值是解题的关键,考查计算能力,属于中等题.5. 已知函数,其中为实数,若对恒成立,且,则的单调递增区间是A. B. C. D. 【答案】C【解析】【分析】先由三角函数的最值得或,再由得,进而可得单调增区间.【详解】因为对任意恒成立,所以,则或,当时,则(舍去),当时,则,符合题意,即,令,解得,即的单调递增区间是;故选C.【点睛】本题主要考查了三角函数的图像和性质
5、,利用三角函数的性质确定解析式,属于中档题.6. 已知两定点,如果动点满足,点是圆上的动点,则的最大值为( )A. B. C. D. 【答案】B【解析】【分析】先求出动点轨迹方程(圆),再根据两圆位置关系确定的最大值取法,计算即可得结果.【详解】设,因为,所以因此最大值为两圆心距离加上两圆半径,即为故选:B【点睛】本题考查动点轨迹方程、根据两圆位置关系求最值,考查数形结合思想方法以及基本化简能力,属中档题.7. 等差数列的前项和为,若,则下列结论正确的是( )A. B. C. D. 【答案】C【解析】试题分析:由等差数列的性质及求和公式得,,,故选C.考点:1. 等差数列的性质;2.等差数列的
6、求和公式.8. 已知点是双曲线上一点,分别是双曲线C的左、右焦点,若以为直径的圆经过点A,则双曲线C的离心率为( )A. B. 2C. D. 5【答案】C【解析】【分析】根据以为直径的圆经过点A,结合双曲线的定义可以求出a的值,最后求出离心率.【详解】解析:由已知得,所以,所以,又,所以,所以双曲线的离心率.故选:C【点睛】本题考查了求双曲线离心率问题,考查了双曲线的定义,考查了数学运算能力.二、选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项是符合题目要求的全部选对的得5分,有选错的得0分,部分选对的得3分)9. 已知向量,则下列命题正确的是( )A. 若,则B.
7、若在上的投影为,则向量与的夹角为C. 存在,使得D. 的最大值为【答案】BCD【解析】【分析】若,则,故A错误;若在上的投影为,且,则,故B正确;若在上的投影为,且,故当,故C正确; , 的最大值为,故D正确.【详解】若,则,则,故A错误;若在上的投影为,且,则,故B正确;若,若,则,即,故,故C正确; ,因为,则当时,的最大值为,故D正确,故选:BCD【点睛】本题主要考查平面向量的数量积的计算和应用,考查数量积的运算律,意在考查学生对这些知识的理解掌握水平.10. 已知是定义域为R的函数,满足,当时,则下列说法正确的是( )A. 的最小正周期为4B. 的图像关于直线对称C. 当时,函数的最大
8、值为2D. 当时,函数的最小值为【答案】ABC【解析】【分析】根据周期的定义判断A;根据对称性判断B;根据二次函数的单调性以及对称性判断C;根据周期性以及单调性得出在上的单调性,即可判断D.【详解】对于A,则,即的最小正周期为4,故A正确;对于B,由知的图像关于直线对称,故B正确;对于C,当时,在上单调递减,在上单调递增根据对称性可知,函数在,上单调递减,在,上单调递增,则函数在上的最大值为,故C正确;对于D,根据周期性以及单调性可知,函数在上单调递减,在上单调递增,则函数在上的最小值为,故D错误.故选:ABC.【点睛】本题主要考查了函数的对称性、周期性、利用单调性求最值,属于中档题.11.
9、在中,已知,且,则( )A. 、成等比数列B. C. 若,则D. 、成等差数列【答案】BC【解析】【分析】首先根据已知条件化简得到,再依次判断选项即可得到答案.【详解】因为,所以,即.又因为,所以,即,.对选项A,因为,所以、成等比数列,故A错误.对选项B,因为,所以,即,故B正确.对选项C,若,则,则,因为,所以.故,故C正确.对选项D,若、成等差数列,则.又因为,则.因为,设,则,故D错误.故选:BC【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查了三角函数的恒等变换,属于中档题.12. 已知,记,则( )A. 最小值为B. 当最小时, C. 的最小值为D. 当最小时【答案】AB【
10、解析】【分析】根据条件可将的最小值,转化为函数图象上的点到直线的距离的最小值的平方,结合两直线的位置关系和导数的几何意义,即可求解.【详解】由和,则的最小值,可转化为函数图象上的点到直线的距离的最小值的平方,又由,可得,因为与直线平行的直线的斜率为,所以,解得,则切点的坐标为,所以到直线上的距离,即函数上的点到直线上的点的距离的最小值为,所以的最小值为,又过且与直线垂直的直线为,即,联立方程组,解得,即当最小时,.故选:AB【点睛】本题主要考查了函数与方程综合应用,以及导数的几何意义的应用,其中解答中熟练应用导数的几何意义,合理转化求解是解答的关键,着重考查推理与运算能力.三、填空题(本大题共
11、4小题,每小题5分,共20分把答案填写在答题卡相应位置上)13. 经过点A(5,2),且在x轴上的截距等于在y轴上截距的2倍的直线方程为_【答案】或【解析】【分析】由题意:假设截距不为0时,设出纵截距,利用截距的关系表示出横截距,再用截距式表示直线方程,将点A代入直线方程,即可求出参数值,将参数值待入直线方程再化简,即可求出方程;当截距为0时,设相应的直线方程,代入点A坐标,求解即可.【详解】当截距不为0时,设直线的纵截距为b,则横截距为,直线方程为:,将点A坐标代入直线方程,解得:,所以直线方程为:;当截距为0时,设直线方程为:,代入点A,可得:,直线方程为:.【点睛】本题考查直线方程的截距
展开阅读全文