数理逻辑发展简史课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数理逻辑发展简史课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数理逻辑 发展 简史 课件
- 资源描述:
-
1、数理逻辑发展简史马殿富马殿富北航计算机学院北航计算机学院2002009-99-9计算机学院2计算机学院什么是逻辑?什么是逻辑?逻辑示例逻辑示例 有有2 2个红色帽子,个红色帽子,3 3个黑色个黑色帽子。帽子。三个人站成一纵队,各戴三个人站成一纵队,各戴一顶帽子,每人仅能看到一顶帽子,每人仅能看到前面人帽子颜色。前面人帽子颜色。问?问?第三个人帽子颜色?第三个人帽子颜色?回答:不知道!回答:不知道!第二个人帽子颜色?第二个人帽子颜色?回答:不知道!回答:不知道!第一个人帽子颜色?第一个人帽子颜色?回答:知道!回答:知道!第一个人帽子颜色是什么第一个人帽子颜色是什么?为什么?为什么?第一个人推理:
2、第一个人推理:如果第一人和第二人都是红色如果第一人和第二人都是红色帽子,则第三人知道自己帽子帽子,则第三人知道自己帽子颜色为黑色。颜色为黑色。因为第三人不知道自己帽子颜因为第三人不知道自己帽子颜色为黑色,所以,第一人和第色为黑色,所以,第一人和第二人不都是红色帽子。二人不都是红色帽子。如果第一是红色帽子,则第二如果第一是红色帽子,则第二人知道自己帽子颜色为黑色。人知道自己帽子颜色为黑色。因为第二人不知道自己帽子颜因为第二人不知道自己帽子颜色为黑色,所以,第一不是红色为黑色,所以,第一不是红色帽子。色帽子。第一是黑色帽子。第一是黑色帽子。计算机学院3计算机学院什么是逻辑?什么是逻辑?思维形式思维
3、形式 概念概念反映事物本质属性。反映事物本质属性。判断判断由概念组成的一种思维形式叫判断。由概念组成的一种思维形式叫判断。推理推理由几个相关联的判断所构成的思维形式叫推理。由几个相关联的判断所构成的思维形式叫推理。逻辑逻辑 从结构方面研究正确思维形式及其规律的科学。从结构方面研究正确思维形式及其规律的科学。计算机学院4计算机学院数理逻辑是什么?数理逻辑是什么?狭义数理逻辑狭义数理逻辑 用数学方法研究数学中演绎思维和数学基础的学科。用数学方法研究数学中演绎思维和数学基础的学科。广义数理逻辑广义数理逻辑 用特制符号和数学方法来研究处理演绎方法的理论。用特制符号和数学方法来研究处理演绎方法的理论。狭
4、义数理逻辑包括五个部分狭义数理逻辑包括五个部分 逻辑演算逻辑演算 模型论模型论 集合论集合论 递归论递归论 证明论证明论计算机学院5计算机学院数理逻辑发展数理逻辑发展2 2种主要途径种主要途径 借助数学的方法改进传统逻辑不足;借助数学的方法改进传统逻辑不足;对数学基础的研究,产生了大量与逻辑对数学基础的研究,产生了大量与逻辑有关的问题。有关的问题。计算机学院6计算机学院数理逻辑发展简介数理逻辑发展简介史前时期史前时期 亚里土多德的三段论,斯多阿学派的命题逻辑和中世纪形式逻辑。亚里土多德的三段论,斯多阿学派的命题逻辑和中世纪形式逻辑。初创时期初创时期 莱布尼茨的数理逻辑思想莱布尼茨的数理逻辑思想
5、 逻辑代数和关系逻辑逻辑代数和关系逻辑奠基时期奠基时期 从弗雷格的从弗雷格的概念文字概念文字到希尔伯特的元数学纲领到希尔伯特的元数学纲领 逻辑演算的建立,素朴集合论、公理集合论逻辑演算的建立,素朴集合论、公理集合论 逻辑类理论,直觉主义数学基础和逻辑,形式公理学和证明论。逻辑类理论,直觉主义数学基础和逻辑,形式公理学和证明论。发展初期发展初期 哥德尔的几项重大结果哥德尔的几项重大结果完全性定理、不完全性定理和连续统假设的一致性等完全性定理、不完全性定理和连续统假设的一致性等 形式语言中真值概念的定义形式语言中真值概念的定义 一般递归函数和图灵机理论,判定问题的重要成果等。一般递归函数和图灵机理
6、论,判定问题的重要成果等。现代时期现代时期 各种非经典逻辑演算各种非经典逻辑演算 模型论、集合论、递归论和证明论。模型论、集合论、递归论和证明论。计算机学院7计算机学院史前时期史前时期 古代希腊最伟大的哲学家,古典形式古代希腊最伟大的哲学家,古典形式逻辑的创始人;逻辑的创始人;在命题中引进了主谓项的变元,建立在命题中引进了主谓项的变元,建立了三段论的理论;了三段论的理论;在逻辑史上第一次应用了形式化、公在逻辑史上第一次应用了形式化、公理化的的演绎系统,开创了逻辑的形理化的的演绎系统,开创了逻辑的形式化研究;式化研究;构造了模态三段论系统,开创了模态构造了模态三段论系统,开创了模态逻辑的研究;逻
7、辑的研究;在在工具论工具论中,总结了正确的推理中,总结了正确的推理方法,建立了形式逻辑;在方法,建立了形式逻辑;在分析篇分析篇提出公理学理论的基础。提出公理学理论的基础。亚里土多德亚里土多德(Aristotle,公元前,公元前384322)计算机学院8计算机学院史前时期史前时期 斯多阿学派的命题逻辑斯多阿学派的命题逻辑 古希腊的一个哲学学派古希腊的一个哲学学派 创造了命题逻辑,用形式化和公理化的方法第一次构造创造了命题逻辑,用形式化和公理化的方法第一次构造了一个命题逻辑系统,给出了一个命题逻辑系统,给出5 5种公理化基本推理图式。种公理化基本推理图式。斐洛斐洛 (Philo)(Philo)第一
8、个提出了相当于现代命题演算中实质蕴第一个提出了相当于现代命题演算中实质蕴涵的真值表。涵的真值表。欧布理得发现了说谎者悖论:欧布理得发现了说谎者悖论:一个说谎的人说一个说谎的人说“我正在说谎我正在说谎”;他是在说谎,还是说真话他是在说谎,还是说真话?这一悖论现在归属于语义悖论。这一悖论现在归属于语义悖论。中世纪的形式逻辑中世纪的形式逻辑 中世纪逻辑学家总共陈述了中世纪逻辑学家总共陈述了6060多条推论原理多条推论原理计算机学院9计算机学院传统逻辑传统逻辑 传统逻辑主要是指亚里士多德逻辑传统逻辑主要是指亚里士多德逻辑 经过中世纪的演变一直沿用到十九世纪经过中世纪的演变一直沿用到十九世纪;在中世纪被
9、认为金科玉律、完美元缺在中世纪被认为金科玉律、完美元缺;到了十九世纪,它的缺点突出,急需改革。到了十九世纪,它的缺点突出,急需改革。传统逻辑主要缺点:传统逻辑主要缺点:传统逻辑所讨论的子句仅限于主宾式语句,分成四种:传统逻辑所讨论的子句仅限于主宾式语句,分成四种:全称肯定全称肯定A A:AspAsp,凡,凡s s均为均为p p;全称否定全称否定E E,EspEsp,凡,凡s s均非均非p p;特称肯定特称肯定I I,IspIsp,有的,有的s s为为p p;特称否定特称否定O O,OspOsp;有的;有的s s非非p p。限于三段论。限于三段论。没有关于量词的研究,没有没有关于量词的研究,没有
10、“变元变元”的概念。的概念。计算机学院10计算机学院初创时期初创时期 德国哲学家和数学家,德国哲学家和数学家,1717世纪末创建世纪末创建了数理逻辑。了数理逻辑。建立一种理想的建立一种理想的“通用语言通用语言”进行推进行推理。理。他曾经给一位友人的信上写道:他曾经给一位友人的信上写道:“要是我少受搅扰,或者要是我更年青些要是我少受搅扰,或者要是我更年青些,或有一些年青人来帮助我,我将作出一,或有一些年青人来帮助我,我将作出一种种 “通用代数通用代数”(在其中,一切推理的正在其中,一切推理的正确性将化归于计算它同时又将是通用语确性将化归于计算它同时又将是通用语言,但却和目前现有的一切语言完全不同
11、言,但却和目前现有的一切语言完全不同;其中的字母和字将由推理来确定,除却;其中的字母和字将由推理来确定,除却事实的错误以外;所有的错误将只由于计事实的错误以外;所有的错误将只由于计算失误而来。要创作或发明这种语言或字算失误而来。要创作或发明这种语言或字母将是困难的,但要学习它,即使不用字母将是困难的,但要学习它,即使不用字典,也是很容易的。典,也是很容易的。”莱布尼茨(Leibniz,16461716)计算机学院11计算机学院初创时期初创时期 莱布尼茨预创造两种工具,莱布尼茨预创造两种工具,其一是通用语言其一是通用语言使用简单明了的符号;使用简单明了的符号;合理的语言规则;合理的语言规则;便于
12、逻辑分析和综合。便于逻辑分析和综合。另一种是推理演算另一种是推理演算它将处理通用语言;它将处理通用语言;规定符号的演变规则、运算规则;规定符号的演变规则、运算规则;使得逻辑的演算进行机械式计算。使得逻辑的演算进行机械式计算。莱布尼茨的思想是用代数方法处理古典形式逻辑莱布尼茨的思想是用代数方法处理古典形式逻辑的推理,延续了大约二百年。的推理,延续了大约二百年。计算机学院12计算机学院初创时期初创时期 德德.摩根摩根关系逻辑关系逻辑 1919世纪英国数学家和逻辑学家世纪英国数学家和逻辑学家,生于印度;,生于印度;18381838年提出年提出“数学归纳法数学归纳法”的的概念;概念;首先提出首先提出“
13、论域论域”的概念,第的概念,第一次明确用公式表达合取和析一次明确用公式表达合取和析取的关系,称为德取的关系,称为德 摩根律;摩根律;主张判断扩充为一般的关系语主张判断扩充为一般的关系语句,明确主张发展关系逻辑,句,明确主张发展关系逻辑,逻辑代数的创始人之一。逻辑代数的创始人之一。DeMorgan 1806-1871计算机学院13计算机学院初创时期初创时期 布尔布尔英国数学家英国数学家 18471847年,发表了年,发表了逻辑的数学分逻辑的数学分析,论演绎推理演算析,论演绎推理演算,18541854年年出版了出版了思维法则的探讨,作为思维法则的探讨,作为逻辑与概率的数学理论的基础逻辑与概率的数学
14、理论的基础 建立了建立了“布尔代数布尔代数”,并创造一,并创造一套符号系统,利用符号来表示逻套符号系统,利用符号来表示逻辑中的各种概念,这是一种新的辑中的各种概念,这是一种新的逻辑。逻辑。建立了一系列的运算法则,利用建立了一系列的运算法则,利用代数的方法研究逻辑问题,初步代数的方法研究逻辑问题,初步奠定了数理逻辑的基础。奠定了数理逻辑的基础。George Boole 1815-1864计算机学院14计算机学院初创时期初创时期 耶芳斯耶芳斯 使用相等记号来表示命题中的系词使用相等记号来表示命题中的系词 布尔代数引入相容的或运算。布尔代数引入相容的或运算。文恩(英国逻辑学家)文恩(英国逻辑学家)用
15、图解法表示布尔代数用图解法表示布尔代数 18811881年提出符号逻辑年提出符号逻辑 麦柯尔麦柯尔(H(HMcColl)McColl)用字母及字母的组合表示整个命题;用字母及字母的组合表示整个命题;沿用流行的符号把沿用流行的符号把“A A或或B B”,“A A且且B B“非非A A”表为表为A+BA+B,ABAB,A A;引入了引入了A A蕴涵蕴涵B B的概念,表示为的概念,表示为A:BA:B。Stanley Jevons1835-1882John Venn1834-1923计算机学院15计算机学院初创时期初创时期Charles S.Peirce(1839-1914)皮尔斯C.S.Peirce
16、 1885年独立地引进了量词这个名称,以及存在量词x 和全称量词x两个符号。命题代数或命题演算“既非,又非”作为逻辑作为初始运算。在逻辑史上第一次全面、系统地建立了关系演算。皮尔斯和弗雷格都明确指出命题只有真假二值,命题的研究实质上是真假值的研究。计算机学院16计算机学院奠基时期奠基时期 德国人,数学家,逻辑学家,哲学家德国人,数学家,逻辑学家,哲学家 18791879年的年的表意符号表意符号引入和使用量词与约引入和使用量词与约束变元。束变元。18791879年出版著作年出版著作概念文字:一种模仿算术概念文字:一种模仿算术语言构造的纯思维的形式语言语言构造的纯思维的形式语言;第一次把谓词演算形
17、式化第一次把谓词演算形式化,完备地发展了命题完备地发展了命题演算和谓词演算;演算和谓词演算;历史上第一个严格的关于逻辑规律的公理系历史上第一个严格的关于逻辑规律的公理系统;这个系统共有三个基本概念:蕴涵、否统;这个系统共有三个基本概念:蕴涵、否定和全称量词,共有九条公理。定和全称量词,共有九条公理。第一个引入了符号第一个引入了符号;接近于完成数理逻辑整个基础,标志着数理接近于完成数理逻辑整个基础,标志着数理逻辑的发展由创建时期进入奠基时期。逻辑的发展由创建时期进入奠基时期。弗雷格 Gottlob Frege 1848-1925计算机学院17计算机学院奠基时期奠基时期 18991899年意大利数
18、理逻辑学家;年意大利数理逻辑学家;提出了自然数算术的一个公理提出了自然数算术的一个公理系统系统 18941894年出版数学公式,年出版数学公式,逻辑逻辑符号体系沿用至今;符号体系沿用至今;用逻辑演算表述数学、推导用逻辑演算表述数学、推导数学数学;区分集合论中的区分集合论中的“属于属于”关关系和包含关系系和包含关系;关于自然数论的五个公理一关于自然数论的五个公理一直沿用到现在,成为自然数直沿用到现在,成为自然数论的出发点。论的出发点。皮亚诺Giuseppe Peano 1858-1932计算机学院18计算机学院奠基时期奠基时期 罗素罗素(B.Russell)(B.Russell),英国逻辑学,英
19、国逻辑学家,哲学家;家,哲学家;继承皮亚诺的研究,完备了命继承皮亚诺的研究,完备了命题演算和谓词演算的成果;题演算和谓词演算的成果;以集合论为基础,给出了自然以集合论为基础,给出了自然数定义,证明了自然数满足皮数定义,证明了自然数满足皮亚诺的五个公理;亚诺的五个公理;罗素总结了数理逻辑的成果,罗素总结了数理逻辑的成果,和怀特海合著了和怀特海合著了数学原理数学原理,他的成果汇集成为一本巨著,他的成果汇集成为一本巨著,奠定了数理逻辑的基础。,奠定了数理逻辑的基础。Bertrand Russell 1872-1970计算机学院19计算机学院数学三次大危机数学三次大危机 数学曾发生三次大危机,它使数学
20、基础问题数学曾发生三次大危机,它使数学基础问题发生三次大争论。发生三次大争论。第一次是古希腊时代无理数的发现第一次是古希腊时代无理数的发现 毕达格拉斯学派以毕达格拉斯学派以 “只有可通约量只有可通约量”为信念为信念。为了解释无理数的存在,处理无理数,古。为了解释无理数的存在,处理无理数,古希腊人发展了比例论,从而建立几何公理系希腊人发展了比例论,从而建立几何公理系统。统。第二次是十七、八世纪关于微积分基础的争第二次是十七、八世纪关于微积分基础的争论,即关于无穷小的争论,它一直延续到十论,即关于无穷小的争论,它一直延续到十九世纪,结果得出了极限论以及无理数的算九世纪,结果得出了极限论以及无理数的
21、算术理论。术理论。第三次是集合论悖论的出现,从而导致数理第三次是集合论悖论的出现,从而导致数理逻辑的蓬勃发展。逻辑的蓬勃发展。Pythagoras,572BC497BC),古希腊计算机学院20计算机学院第一次数学危机第一次数学危机 欧几里德,古希腊数学家;欧几里德,古希腊数学家;几何原本几何原本是一个实质公理系统,是一个实质公理系统,把点、线、面、角等分为原始定义概把点、线、面、角等分为原始定义概念(念(2323)和可定义概念,把命题分为)和可定义概念,把命题分为公设(公设(5 5)、公理()、公理(5 5)和可由公理公)和可由公理公设出发加以证明的定理(设出发加以证明的定理(467467)。
22、从)。从简单到复杂,证明相当严格。从而建简单到复杂,证明相当严格。从而建立了欧几里得几何学的第一个公理化立了欧几里得几何学的第一个公理化数学体系。数学体系。在在几何原本几何原本所给的公理公设中,所给的公理公设中,第五公设是关于平行线的,通常叫做第五公设是关于平行线的,通常叫做平行公理。平行公理。5 5(平行公设平行公设)若一直线与两直线相交若一直线与两直线相交,且若同侧所交两内角之和小于两直,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该角,则两直线无限延长后必相交于该侧的一点。侧的一点。Euclid of Alexandria 325 BC-265 BC 计算机学院21计算机
23、学院无穷的大小无穷的大小 16381638年伽利略年伽利略(Galileo)(Galileo)11,2 2,3 3,4 4,.1,4,9,16,1,4,9,16,伽利略(1564-1642)计算机学院22计算机学院第二次数学危机第二次数学危机 牛顿和莱布尼茨提出微积分,计牛顿和莱布尼茨提出微积分,计算非等速运动、不均匀密度的物算非等速运动、不均匀密度的物体等物理现象引发微积分的基础体等物理现象引发微积分的基础问题争论达一百多年。问题争论达一百多年。极限论的说法中,有一条性质,极限论的说法中,有一条性质,即即“有界单调的数列必有极限有界单调的数列必有极限”,是一切其它性质的基础,别的,是一切其它
24、性质的基础,别的性质都可由它推出。但这条性质性质都可由它推出。但这条性质又从何推出呢又从何推出呢?长期以来,人们以为可以由几何长期以来,人们以为可以由几何性质推出但几何公理中,根本性质推出但几何公理中,根本末讨论到连续的性质,更未讨论末讨论到连续的性质,更未讨论到极限。到极限。Isaac Newton 1643-1727计算机学院23计算机学院 Augustin-Louis CauchyAugustin-Louis Cauchy(1789 1789 1857 1857)柯西用柯西用“-”的数学形式的数学形式对极限、收敛给出了严格对极限、收敛给出了严格的定义。的定义。计算机学院24计算机学院 魏
25、尔斯特拉斯魏尔斯特拉斯 Karl Theodor Wilhelm Karl Theodor Wilhelm Weierstrass Weierstrass(1815 1815 18971897)1919世纪下半叶,维尔世纪下半叶,维尔斯特拉斯、戴德金、斯特拉斯、戴德金、康托尔等数学家分别康托尔等数学家分别给实数作出了算术形给实数作出了算术形式定义之后,实数理式定义之后,实数理论建立在集合论基础论建立在集合论基础之上。之上。计算机学院25计算机学院非欧几何非欧几何 1818世纪初意大利数学家萨克利,用反证世纪初意大利数学家萨克利,用反证法,假设欧氏几何五公设的否定命题,法,假设欧氏几何五公设的否
展开阅读全文