书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型数列通项公式的求法(最全)课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5924981
  • 上传时间:2023-05-16
  • 格式:PPT
  • 页数:33
  • 大小:1.65MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数列通项公式的求法(最全)课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数列 公式 求法 课件
    资源描述:

    1、类型一类型一 观察法:观察法:已知前几项,写通项公式已知前几项,写通项公式一、普通数列:一、普通数列:121211 2 -,-32532 7 77 777 77773 ba b a(),(),(),12(1)nnan 7(101)9nna(1)22nnababa 方法规律总结:方法规律总结:1.正负号用正负号用(-1)n或或(-1)n+1来调节。分式形式观察分母间关系和分子间关系的来调节。分式形式观察分母间关系和分子间关系的同时还要观察分子与分母间的关系,有时还要把约分后的分式还原后观察。同时还要观察分子与分母间的关系,有时还要把约分后的分式还原后观察。2.如如0.7,0.77,0.777类的

    2、数列,要用类的数列,要用“归九法归九法”3.两个循环的数列是两个循环的数列是0,1,0,1的变形。可以拆成一个常数列的变形。可以拆成一个常数列b,b,b,b与与0,a-b,0,a-b.的和,分别写通项然后相加再化简。的和,分别写通项然后相加再化简。)101-1(97nna类型二、类型二、前前n项和项和Sn法法 已知前已知前n项和,求通项公项和,求通项公式式11 (1)(2)nnnSnaSSn 设设an的前的前n项和为项和为Sn,且满足且满足Sn=n2+2n-1,求求an n的通项公式的通项公式.例例2:设数列设数列an满足满足a1=1,an=-SnSn-1(n2,nN*)求求an n的通项公式

    3、的通项公式.例例3:2 1 21 2nnann 1 1 1 2(1)nnann n 提示:把提示:把an代换成代换成Sn-Sn-1等式两边再同等式两边再同(-SnSn-1)1时,2提示:当nnnSSan1)1(21)-(n-1)-2nn(22n2362nnnaaS分析:由题意得2366112111aaSan时,当212111111aSaaa故又或解得由由整理得整理得2361211nnnaaS且有300)3)(1111nnnnnnnnaaaaaaaa又 13)1(3232nnaaannn的通项为故的等差数列,公差为是首项为故11nnnaSS的关系与可找出nnaa1 的通项公式求,),2)(1(6

    4、且1满足项和的前各项均正数的数列)重庆07(:3例*1nnnnnnaNnaaSSSna例例1:在在an中,已知中,已知a1=1,an=an-1+n(n2),求通项求通项an.练:练:111311,3 (2)2nnnnnaaaana n n已已知知中中,证,证明明:类型一、类型一、累加法累加法 形如形如 的递推式的递推式11223343221 1 2 3 .3 2 nnnnnnnnaanaanaanaanaaaa 解解:以以上上各各式式相相加加n1 a(234)(n+2)(n-1)=1+2 an 得得二、递推数列:二、递推数列:条件:条件:f(1)+f(2)+f(n-1)的和要可以求出才可用)的

    5、和要可以求出才可用1()nnaaf n例例2:12,3,.nnnnnaaaaa 1 1已已知知中中,求求通通项项练:练:122,2,.nnnnaaaaan 1 1已已知知中中,求求通通项项类型二、类型二、累乘法累乘法形如形如 的递推式的递推式123412312342322123211 3,3,3,3 .3,3 3 3333 2 3nnnnnnnnnnnnnnnaaaaaaaaaaaaaa 解解:以以上上各各式式相相乘乘得得1 2 3(-1)(-1)2(-1)2 2 3 2 3nn nn nna 条件:条件:f(1)f(2)f(n-1)的积要可以求出才可用)的积要可以求出才可用1()nnaf n

    6、 a满足与若数列相邻两项一nnaa1)(则可考虑待定系数法设则可考虑待定系数法设 xapxann1为待定系数,其中x ()-满足qxpx xan是首项为是首项为 xa1qpaann1公比为公比为p的等比数列,求出的等比数列,求出,再进一步求通项再进一步求通项 xanna类型三、形如类型三、形如 的递推式的递推式通用方法:通用方法:待定系数法待定系数法1()nnapaf n1 1、形如、形如qpaann1例例3:111,21 .nnnnaaaaa 数数列列满满足足,求,求分析:构造等比分析:构造等比数列数列an+x,若可以观察,若可以观察x值更好值更好2 2、形如、形如类型三、形如类型三、形如

    7、的递推式的递推式分析:构造等比分析:构造等比数列数列an+kn+b,1()nnapaf nBAnpaann13 3、形如、形如类型三、形如类型三、形如 的递推式的递推式分析:构造等比分析:构造等比数列数列an+xn2+yn+z,1()nnapaf nCBnAnpaann214 4、形如、形如类型三、形如类型三、形如 的递推式的递推式分析:构造等比分析:构造等比数列数列an+xqn+y,1()nnapaf nBAqpaannn1类型四:类型四:(1)形如)形如 的递推式的递推式例例7:1113,33,nnnnaaaaa n n数数列列满满足足:求求通通项项公公式式.11111 33 133 13

    8、3 -11333nnnnnnnnnnnnnaaaaaaaannan 解解:是是以以为为首首项项,以以 为为公公差差的的等等差差数数列列()相除法相除法 两边同除以两边同除以1nA11nnnABAaa类型四类型四、(、(2)形如)形如 的递推式的递推式相除法相除法11nnnCBAaa两边同除以两边同除以 或或?1nA?1nC的通项公式,求数列的数列nnnnnaNnaaaa)(24,2111122211nnnnaa可化为的等比数列,公比为是首项为故数列 2 2121212aannnnnnnnaa242221211221211nnnnaa都是常数与相邻两项,是其、,新数列2 1 22211nnnnn

    9、naaa1124nnnaa 的通项公式,求数列的数列nnnnnaNnaaaa)(24,21111124nnnaa1112144nnnnnaa可化为为什么类型呢?,转化同除以14n1112144nnnnnaannnnnaaaaaa2144,2144,214411322332122nnnaa21212144321nnnna21121212121432nnna24 上面各式相加可得几个式子?类型五、(类型五、(3)形如)形如 的递推式的递推式例例8:1112,0,2.nnnnnnaaaaaaa已知且,求1111111 2 211 -211545 -1(-2)-2222 45nnnnnnnnnaaaa

    10、aaaannnaaan 解解:是是以以为为首首项项,以以为为公公差差的的等等差差数数列列()两边同除以两边同除以an+1an相除法相除法11nnnnapaqa a例例6:111,21nnnnnaaaaaa 数数 列列满满 足足:求求通通 项项 公公 式式取倒法取倒法构造辅助数列构造辅助数列类型五类型五、形如、形如 的递推式的递推式111n11n12111 221a11 2aannnnnnaaaaaa 解解:是是以以为为首首项项,以以 为为公公差差的的等等差差数数列列1nnnpaaqap111(1)221 21nnnnnaaan 1类型六、(类型六、(1)形如)形如 的递推式的递推式1rnnap

    11、a分析:取对数分析:取对数后后构造等比构造等比数列数列分析:分析:先先转化转化后后取对数取对数再再构造等比构造等比数列数列类型六、(类型六、(2)形如)形如 递推式递推式CBaAaannn21类型七、特征根法、不动点法类型七、特征根法、不动点法(一)理论部分:(一)理论部分:21nnnapaqa类型七、特征根法、不动点法类型七、特征根法、不动点法(二)特征根法:(二)特征根法:类型七、特征根法、不动点法类型七、特征根法、不动点法(一)理论部分:(一)理论部分:1nnnpaqarah试求斐波那契数列(兔子数列):试求斐波那契数列(兔子数列):1,1,2,3,5,8,13,21,34,55,89

    12、的通项公式的通项公式类型七、特征根法、不动点法类型七、特征根法、不动点法(三)不动点法:(三)不动点法:类型七、特征根法、不动点法类型七、特征根法、不动点法(三)不动点法:(三)不动点法:不动点法理论纯字母推导比较难,看一个具体的例题,帮助理解不动点法理论纯字母推导比较难,看一个具体的例题,帮助理解特征根法对待定系数的妙用:特征根法对待定系数的妙用:类型八、其他方法类型八、其他方法(一)开方、平方法(一)开方、平方法 求递推数列的通项的主要思路是通过转化求递推数列的通项的主要思路是通过转化,构造新的熟知构造新的熟知数列数列,使问题化陌生为熟悉使问题化陌生为熟悉.我们要根据不同的递推关系式我们要

    13、根据不同的递推关系式,采取采取不同的变形手段不同的变形手段,从而达到转化的目的从而达到转化的目的.类型八、其他方法类型八、其他方法(二)裂项叠加法(二)裂项叠加法类型八、其他方法类型八、其他方法(三)换元法(三)换元法类型类型方法方法1、已知前几项、已知前几项观察法观察法2、已知前、已知前n项和项和Sn前前n项和法项和法3、形如、形如 的递推式的递推式累加法累加法4、形如、形如 的递推式的递推式累乘法累乘法5、形如、形如 的递推式的递推式待定系数法待定系数法6、形如、形如 的递推式的递推式取倒法取倒法7、形如、形如 的递推式的递推式相除法相除法8、形如、形如 的递推式的递推式对数法对数法9、形如、形如 的递推式的递推式特征根法特征根法10 形如形如 的递推式的递推式不动点法不动点法1()nnaaf n1()nnaf n a1()nnapaf n1nnnpaaqap1nnnaAaB C11nnnnapaqaa1rnnapa21nnnapaqa1nnnpaqarah数列通项公式的求法数列通项公式的求法

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数列通项公式的求法(最全)课件.ppt
    链接地址:https://www.163wenku.com/p-5924981.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库