书签 分享 收藏 举报 版权申诉 / 47
上传文档赚钱

类型模式识别7特征选择和提取课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5916559
  • 上传时间:2023-05-15
  • 格式:PPT
  • 页数:47
  • 大小:3.01MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《模式识别7特征选择和提取课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    模式识别 特征 选择 提取 课件
    资源描述:

    1、 特征选择和提取 特征选择和提取 特征选择和提取是模式识别中的一个关键问题 前面讨论分类器设计的时候,一直假定已给出了特征向量维数确定的样本集,其中各样本的每一维都是该样本的一个特征;这些特征的选择是很重要的,它强烈地影响到分类器的设计及其性能;假若对不同的类别,这些特征的差别很大,则比较容易设计出具有较好性能的分类器。特征选择和提取 特征选择和提取是构造模式识别系统时的一个重要课题 在很多实际问题中,往往不容易找到那些最重要的特征,或受客观条件的限制,不能对它们进行有效的测量;因此在测量时,由于人们心理上的作用,只要条件许可总希望把特征取得多一些;另外,由于客观上的需要,为了突出某些有用信息

    2、,抑制无用信息,有意加上一些比值、指数或对数等组合计算特征;如果将数目很多的测量值不做分析,全部直接用作分类特征,不但耗时,而且会影响到分类的效果,产生“特征维数灾难”问题。特征选择和提取 为了设计出效果好的分类器,通常需要对原始的测量值集合进行分析,经过选择或变换处理,组成有效的识别特征;在保证一定分类精度的前提下,减少特征维数,即进行“降维”处理,使分类器实现快速、准确和高效的分类。为达到上述目的,关键是所提供的识别特征应具有很好的可分性,使分类器容易判别。为此,需对特征进行选择。应去掉模棱两可、不易判别的特征;所提供的特征不要重复,即去掉那些相关性强且没有增加更多分类信息的特征。特征选择

    3、和提取 说明 实际上,特征选择和提取这一任务应在设计分类器之前进行;从通常的模式识别教学经验看,在讨论分类器设计之后讲述特征选择和提取,更有利于加深对该问题的理解。特征选择和提取 所谓特征选择,就是从n个度量值集合x1,x2,xn中,按某一准则选取出供分类用的子集,作为降维(m维,mn)的分类特征;所谓特征提取,就是使(x1,x2,xn)通过某种变换,产生m个特征(y1,y2,ym)(m2,故最优2x1特征提取器此时的K-L变换式为:19.59.59.57.5C0.8750.4820.4820.875V10.8750.482Uu120.8750.482TTxUxyxux特征提取7.3 离散K-

    4、L变换5.3.1 离散的有限K-L展开 展开式的形式 如果对c种模式类别ii=1,c做离散正交展开,则对每一模式可分别写成:xi=ai,其中矩阵 取决于所选用的正交函数。对各个模式类别,正交函数都是相同的,但其展开系数向量ai则因类别的不同模式分布而异。K-L展开式的性质 K-L展开式的根本性质是将随机向量x展开为另一组正交向量j的线性和,且其展开式系数aj(即系数向量a的各个分量)具有不同的性质。在此条件下,正交向量集j的确定 K-L展开式系数的计算步骤7.3 离散K-L变换5.3.2 按K-L展开式选择特征 K-L展开式用于特征选择相当于一种线性变换。若从K个特征向量中取出m个组成变换矩阵

    5、,即=(1 2 m),mK此时,是一个n*m维矩阵,x是n维向量,经过Tx变换,即得到降维为m的新向量。选取变换矩阵,使得降维后的新向量在最小均方差条件下接近原来的向量x7.3 离散K-L变换5.3.2 按K-L展开式选择特征 结论 从K-L展开式的性质和按最小均方差的准则来选择特征,应使Eaj=0。由于Ea=ETx=TEx,故应使Ex=0。基于这一条件,在将整体模式进行K-L变换之前,应先将其均值作为新坐标轴的原点,采用协方差矩阵C或自相关矩阵R来计算特征值。如果Ex0,则只能得到“次最佳”的结果。7.3 离散K-L变换5.3.2 按K-L展开式选择特征 结论 将K-L展开式系数aj(亦即变

    6、换后的特征)用yj表示,写成向量形式:y=Tx。此时变换矩阵用m个特征向量组成。为使误差最小,不采用的特征向量,其对应的特征值应尽可能小。因此,将特征值按大小次序标号,即1 2 m n=0若首先采用前面的m个特征向量,便可使变换误差最小。此时的变换矩阵为7.3 离散K-L变换5.3.2 按K-L展开式选择特征 结论 K-L变换是在均方误差最小的意义下获得数据压缩的最佳变换,且不受模式分布的限制。对于一种类别的模式特征提取,它不存在特征分类问题,只是实现用低维的m个特征来表示原来高维的n个特征,使其误差最小,亦即使其整个模式分布结构尽可能保持不变。7.3 离散K-L变换5.3.2 按K-L展开式选择特征 结论 通过K-L变换能获得互不相关的新特征。若采用较大特征值对应的特征向量组成变换矩阵,则能对应地保留原模式中方差最大的特征成分,所以K-L变换起到了减小相关性、突出差异性的效果。在此情况下,K-L变换也称为主成分变换。7.3 离散K-L变换5.3.2 按K-L展开式选择特征 K-L变换实例 原始模式分布 特征提取作业 设有如下两类样本集,其出现的概率相等:1:(0 0 0)T,(1 0 0)T,(1 0 1)T,(1 1 0)T2:(0 0 1)T,(0 1 0)T,(0 1 1)T,(1 1 1)T用K-L变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:模式识别7特征选择和提取课件.ppt
    链接地址:https://www.163wenku.com/p-5916559.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库