概率论与数理统计参数区间估计23节课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《概率论与数理统计参数区间估计23节课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 参数 区间 估计 23 课件
- 资源描述:
-
1、解含m个参数 的m个方程组,12m,得 nkkXXX,21 mk,21以 作为参数 的估计量.k k 第三步第三步:第四步第四步:,nnkx,x,xX,X,X2121换成换成中的中的将将.x,x,xnkk)(21的的矩矩估估计计值值便便得得到到最大似然估计最大似然估计(MLE)的步骤的步骤:写写出出似似然然函函数数 连连续续离离散散取取对对数数X,;xfX,;xpLn1iin1ii)()()(lnlnln连连续续离离散散X,;xfX,;xp;x,x,xLLniiniin)()()()(1121第一步第一步:第二步第二步:0ln0ln0ln21mLLL .,21为最大似然估计值为最大似然估计值所
2、求得的解所求得的解m ,X,X,Xx,x,xnn2121换成换成中的中的将将k).,(21nkkXXX 的的最最大大似似然然估估计计量量便便得得到到解似然方程(组)解似然方程(组)第三步第三步:第四步第四步:第二节第二节 判别估计量好坏的标准判别估计量好坏的标准基本内容:一、无偏性一、无偏性二、有效性二、有效性三、三、一致性一致性估计量是样本的函数估计量是样本的函数,是随机变量是随机变量.故一个好的估计,应在多次试验中体现出优良性.由不同的样本观测值,就得到不同的参数估计值.所以,估计量的评价准则估计量的评价准则在介绍估计量好坏的准则前,必须强调指出:评价一个估计量的好坏评价一个估计量的好坏,
3、不能仅仅依据一次试不能仅仅依据一次试验的结果验的结果,而必须由多次试验结果来衡量而必须由多次试验结果来衡量.一、无偏性一、无偏性,的的估估计计量量是是未未知知参参数数设设X,Xn)(1;的的为为则则称称无无偏偏估估计计量量XXn),(1.的的为为无无偏偏估估计计值值xxn),(1定义:定义:,E)(若即即的的附附近近摆摆动动,在在参参数数真真值值我我们们希希望望估估计计值值 其对应的估计量其对应的估计量 的期望等于未知参数的期望等于未知参数 的真值的真值.例例1.1.已知正态分布的未知参数 ,2的矩估计量niXXnX1i22)(1;的无偏估计量吗?的无偏估计量吗?分别是分别是试问试问22,,,
4、最大似然估计量相同,即解:解:)(E)(niXXn1i22)(1EEniXXEni1221n)()(nXXni1i221nEE)1()(2222nnnn12)1(nn.X的无偏估计量是故.的无偏估计量不是故22由)(XE由于,2niXXn1i22)(111nnnnniXX1i2)(11n修正的样本方差修正的样本方差2S,22)(SE由于由于.的无偏估计量的无偏估计量是是故故22S(1)样本均值样本均值 X 是是总体均值总体均值E(X)的无偏估计量;的无偏估计量;(3)样本样本 k 阶原点矩阶原点矩一般地,一般地,(例例1 P156)1 P156)11nkkiiVXn 是总体是总体k 阶原点矩阶
5、原点矩E(Xk)的无偏估计量;的无偏估计量;niiXXnS122)(11(2)样本方差样本方差是总体方差是总体方差D(X)的无偏估计量;的无偏估计量;证明证明:(3)11()nkiiEXn 故故11()nkiiE Xn 1()kEnXn 由样本的定义知,Xi与X有相同分布()kE X 集中集中 设 1 和 2 都是参数 的无偏估计量,二、有效性二、有效性1 即即 D(1)D(2).未知参数未知参数 的无偏估计量不是唯一的的无偏估计量不是唯一的.蓝色是采用估计量蓝色是采用估计量 1,用用 14 个样本值得到的个样本值得到的 14 个估计值个估计值.紫色是采用估计量紫色是采用估计量 2,用用 14
6、 个样本值得到的个样本值得到的 14 个估计值个估计值.分散分散2 D(1)D(2)则称则称 1 较较 2 有效有效.都是未知参数都是未知参数 的的无偏估计量无偏估计量.)(nnXXXXXX,),21222111与与设设:定定义义当样本容量n一定时,若在 的所有无偏估计量中,.)(有有效效估估计计量量的是参数则称最小的方差,D若若解:解:)(iXD 故 X 比 X i(i=1,2,n)有效.,2n)()(iXDXD 当n2时,无偏估计量,问哪一个更有效?例例2.2.的都是总体均值与验证),2,1(niXXi)(XD,2)(XD)(1XDn,)(XE易知,)()(XEXEi的无偏估计量.都是总体
7、均值与故),2,1(niXXi例例3.3.设X1,X2,X3是来自总体X的样本,且 统计量中哪个更有效?()总体均值E(X)=未知,则下列4个关于 的.263.;333.;424.;5355.321321321321XXXDXXXCXXXBXXXAC分析:利用分析:利用P181的的7题结论,可选题结论,可选C.三、一致性三、一致性有若对于任意的,0 .的一致估计量是参数则称 nlim()1,nnP定义:定义:证明一致估计的方法:证明一致估计的方法:.0)(lim的一致估计量是则若,Dn回顾例子回顾例子.设总体X的概率密度为其他,0;0),(6)(3xxxxf).()2()1(D的方差求的矩估计
8、量求;X1,X2,Xn 是取自总体X 的简单随机样本,解:解:.2X矩估计量nXDnXDD5)(4)(4)(20,5)(2nlimDlimnn.的一致估计量的一致估计量是是故故内容小结内容小结1.1.无偏性无偏性 样本样本 k 阶原点矩是阶原点矩是总体总体 k 阶原点矩阶原点矩 的无偏估计量的无偏估计量;样本方差样本方差 S 2 是总体方差是总体方差 2 的无偏估计量的无偏估计量;2.2.有效性有效性 方差更小的无偏估计量方差更小的无偏估计量.在在 的所有线性无偏估计量中的所有线性无偏估计量中,样本均值样本均值 X 是最有效的是最有效的.3.3.一致性一致性 而区间估计正好弥补了点估而区间估计
9、正好弥补了点估计的这个缺陷计的这个缺陷.为了使估计的结论更可信为了使估计的结论更可信,需要引入区间估计需要引入区间估计.参数的点估计是用样本算得的一个值去估计未知参数参数的点估计是用样本算得的一个值去估计未知参数.使用起来把握不大使用起来把握不大.点估计值仅仅是未知参数的一个近似值点估计值仅仅是未知参数的一个近似值,它它没有反映出这个近似值的误差范围没有反映出这个近似值的误差范围.估计量的期望等于未知参数的真值估计量的期望等于未知参数的真值.第三节 正态总体参数的区间估计基本内容:一、区间估计的概念二、正态总体均值的区间估计三、正态总体方差的区间估计,P1)(21给定的概率 1-(0 1),定
展开阅读全文