机器人技术讲稿—第6章课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《机器人技术讲稿—第6章课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机器人 技术 讲稿 课件
- 资源描述:
-
1、Robotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则 机器人控制特点:冗余的、多变量、本质非线性、耦合的6.1.1 基本控制原则1、控制器分类 结构形式:伺服、非伺服、位置反馈、速度反馈、力矩控制、控制方式:非线性控制、分解加速度控制、最优控制、自适应控制、滑模控制、模糊控制等 控制器选择:依工作任务,可选PLC控制、普通计算机控制,智能计算机控制等。简单分类:单关节控制器:主要考虑稳态误差补偿;多关节控制器:主要考虑耦合惯量补偿。Robotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.1 基本控制原则 一般分类:PLC、单片机、小型计算
2、机、多计算机分布控制Robotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.1 基本控制原则2、主要控制变量 任务轴R0:描述工件位置的坐标系 X(t):X(t):末端执行器状态;(t):关节变量;C C(t):关节力矩矢量;T(t)T(t):电机力矩矢量;V V(t):电机电压矢量本质是对下列双向方程的控制:)()()()()(tttttXCTVRobotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.1 基本控制原则3、主要控制层次 分三个层次:人工智能级、控制模式级、伺服系统级1)人工智能级 完成从机器人工作任务的语言描述 生成X
3、 X(t);仍处于研究阶段。2)控制模式级 建立X X(t)T T(t)之间的双向关系。电机模型 传动模型 关节动力学模型 机器人模型)()()()(ttttTCX)()()()(ttttXCTRobotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.1 基本控制原则3、伺服系统级 解决关节伺服控制问题即TV Robotics 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.2 伺服控制系统举例1、液压缸伺服传动系统 优点:减少减速器等,消除了间隙和磨损误差,结构简单、精度与电器传动相当。同样可以进行位置、速度、加速度及力的反馈。Robotics
4、 控制6.1 6.1 机器人的基本控制原则机器人的基本控制原则6.1.2 伺服控制系统举例2、典型的滑阀控制液压传动系统Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制 由于机器人系统具有高度非线性,且机械结构很复杂,因此在研究其动态模型时,做如下假设:(1)机器人各连杆是理想刚体,所有关节都是理想的,不存在摩擦和间隙;(2)相邻两连杆间只有一个自由度,或为旋转、或为平移。Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图 伺服电机的参数:Robotics 控制6.2 6.2 机器人的位置控制机器人
5、的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图(1)磁场型控制电机22222,ccmcmmmmmfmmfffffkKffFJJJKdtdFdtdJTikTdtdilirvRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图 Laplace变换得:)()()()()()()()(2sKFsJssTsIksTsIslrsVmmfmmffff)()()(2KFsJsslrksVsffmfmRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图
6、一般可取 K K=0,则有等效框图同时,传递函数变为Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图 :电气时间常数;:机械时间常数。)1)(1()1)(1(1)()()(0sssksFJsrlsFrkFJsslrsksVsmefffmffmfmmeRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图由于 ,有时可以忽略,于是而对角速度的传递函数为:,因为me)1()()(0ssksVsmfmsksVsmfm1)()(0dtdmmRobotics
7、控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图(2)电枢控制型电机K Ke:产生反电势。22222,ccmcmmmmmmmmmemmmmmkKffFJJJKdtdFdtdJTikTkdtdiLiRVRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模1、传递函数与等效方框图 经拉氏变换、并设K K=0,有memmmmmkkJsFsLRsksVs)()()(Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模2、直流电机的转速调整误差信号:)
8、()()(0ttteiRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.1 直流传动系统的建模2、直流电机的转速调整 比例补偿:控制输出与e(t)成比例;微分补偿:控制输出与de(t)/dt成比例;积分补偿:控制输出与e(t)dt成比例;测速补偿:与输出位置的微分成比例。比例微分PD补偿:比例积分PI补偿:比例微分积分PID补偿:测速补偿时:)()()(sEsksEd)()()(sEsksEi)()()(sEsksEid)()1()()()()(00ssssssEsEtitRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.2 位置控制的基
9、本结构1、基本控制结构 位置控制也称位姿控制、或轨迹控制。分为:点到点PTP控制;如点焊;连续路径CP控制;如喷漆 期望的关节位置 期望的工具位置和姿态Tdndddqqqq21,TdTddpwRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.2 位置控制的基本结构2、PUMAPUMA机器人的伺服控制结构 1)机器人控制系统设计与一般计算机控制系统相似。2)多数仍采用连续系统的设计方法设计控制器,然后再将设计好的控制律离散化,用计算机实现。3)现有的工业机器人大多数采用独立关节的PID控制。下图PUMA机器人的伺服控制系统构成 Robotics 控制6.2 6.2 机
10、器人的位置控制机器人的位置控制6.2.2 位置控制的基本结构2、PUMAPUMA机器人的伺服控制结构 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器1、位置控制系统结构具有力、位移、速度反馈 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器1、位置控制系统结构 控制器路径点的获取方式:(1)以数字形式输入系统;若以直角坐标给出,须计算获 得其关节坐标位置。(2)以示教方式输入系统;系统将直接获得关节坐标位置 允许机器人只移动一个关节,而锁住其他关节。轨迹控制:按关键点或轨迹进行定位控制。Rob
11、otics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 对图示系统,有J J:等效转动惯量;B B:等效阻尼系数。lmlmammmBBBJJJJBJT22 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 因此可得其传递函数(同电枢控制直流伺服电机))()()()(2IemmmmImmKkBRsBLJRJsLsKsVs)()()()()()()()(ttKtVtttttesdmmssd)()()()()()()()(ssKsVsssssEsdmmssdRo
12、botics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 其开环传递函数为:因为:,略去Lm的项,简化上式为:)()()()(2IemmmmIsKkBRsBLJRJsLsKKsEs,mmRL)()()(IemmIsKkBRJsRsKKsEsRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 则其闭环传递函数为:这是一个典型的二阶系统闭
13、环传递函数。)()()(1)()(1)()()()(2JRKKJRskKBRsJRKKsEssEsssmmeImmIssdsRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器2、单关节控制器的传递函数 含有速度反馈的机械手单关节控制器的开环传递函数为 闭环传递函数为sKKKKkBRJsRKKsEstIIemmIs)()()(12ItIeImmIssdsKKsKKKkKBRJsRKKsEssEsss)()()(1)()()(
14、)(12Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器3、控制参数确定与稳态误差(1)的确定由上述闭环传递函数,得控制系统的特征方程为:将其写为二阶系统标准形式得1/KK0)(12ItIeImmKKsKKKkKBRJsR0222nnssJRKKKKkKBRJRKKmIteImmIn2/)(0/1Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器3、控制参数确定与稳态误差(1)的确定1/KKRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器3、控制参
15、数确定与稳态误差(1)的确定1/KKRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器3、控制参数确定与稳态误差(1)的确定 设结构的共振频率为 ,则为避免运动中发生共振,要求同时要求系统阻尼大于1,J值随负载和位姿变化,应选可能的最大惯量。rImrrmInKJRKJRKK4,2/2tetIrmmIteImKkKKBJRKJRKKKKkKBR/)/(12/)(111/KKRobotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.3 单关节位置控制器3、控制参数确定与稳态误差(2)稳态误差 根据控制理论,在控制系统框图中,计算得
16、到E(s),即可得到系统的稳态位置误差、速度误差和加速度误差。对于单位阶越位移C C0,其稳态误差为 )(lim)(lim0ssEteestssILgfmsspKKCCCRe/)(Robotics 控制6.2 6.2 机器人的位置控制机器人的位置控制6.2.4 多关节位置控制器 1)为快速运动,一般应采用多关节协调、同步运动。2)这时各关节的位置和速度会互相作用,因此,必须进行附加补偿。1、动态拉格朗日公式 其他关节加速 自身加速 科式力 重力且D项皆与关节角有关。ijkkjijkiaiijijiDqqDqJqDT616161 Robotics 控制6.2 6.2 机器人的位置控制机器人的位置
17、控制6.2.4 多关节位置控制器 Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念 柔性无刚性作用的运动控制。如擦玻璃、抓鸡蛋、装配等 一般应增加力反馈。Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念1、被动柔顺和主动柔顺 被动柔顺:通过弹簧、消振器等机械结构或通过改变机械操 作方式而使机器人与工作对象间产生相对柔性运 动的柔顺方式。(无须控制器参与)如:1)海绵擦玻璃,2)把工件拉进孔取代推入 主动柔顺:通过改变控制器控制方式,增加力反馈等使机器 人与工作对象间无刚性运动的柔顺方式。(必须
18、控制器参与)Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念1、被动柔顺和主动柔顺 定义:在工作点的小位移;:工作点的关节小位移 :正定对角刚度矩阵 :机器人雅可比矩阵 :回复力 :关节力矩 定义关节刚度矩阵:,反应力矩与微位移关系FJKqxpqJKJqJxFJxKFpTTp)(JKJKpTqRobotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念2、作业约束和力控制 自然约束与人为约束Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念2、作业约束和力控制
19、 约束对机器人力控制的影响:1)约束使自由度减少,限制了末端的运动方式;2)约束给机器人增加了作用力,增加了控制的复杂程度;3)上述两种情况会相互作用 Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.1柔顺控制的基本概念3、柔顺控制的种类 1)阻抗控制 通过控制力和位置间的动态关系(阻抗),来实现柔顺功能。即:通过控制使机械手末端呈现所需要的刚性和阻尼。需要位置控制的自由度,需要大的刚性;需要力控制的自由度,需要小的刚性。2)力和位置混合控制 将控制分为一些自由度的位置控制,和另一些自由度的力控制,通过计算,在关节空间合并,进行关节控制。Robotics 控制6.
20、3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.2 主动阻抗控制1、位置型阻抗控制 :估计重力矩 :雅可比矩阵 :机械手等效刚度比例系数 :机械手等效阻尼系数教材中的稳定性讨论,内容不全,这里省略。)()(xKxKqJqgxxxDpTdDpKKqJqg)()(Robotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.2 主动阻抗控制2、柔顺型阻抗控制 :接触引起的环境变形 :接触时 :不接触时 环境作用于机械手的力为:0EEEExxxxxEEExKFRobotics 控制6.3 6.3 机器人的柔顺控制机器人的柔顺控制6.3.3 力和位置混合控制 Kp:刚性对角矩镇阵,
展开阅读全文