有限元分析建模方法课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《有限元分析建模方法课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有限元分析 建模 方法 课件
- 资源描述:
-
1、研究分析对象结构对象研究分析对象结构对象 形成计算模型形成计算模型 选择计算分析程序选择计算分析程序 上上 机机 试试 算算 修改模型修改模型 修改方案修改方案 正式试算,结果分析正式试算,结果分析 计算模型合理?计算模型合理?结构设计方案?结构设计方案?设计方案输出设计方案输出 计算结果输出计算结果输出 优化设计优化设计有限元计算及后处理有限元计算及后处理有限元前处理有限元前处理(建模建模)1)建立实际工程问题的计算模型)建立实际工程问题的计算模型 利用几何、载荷的对称性简化模型利用几何、载荷的对称性简化模型 建立等效模型建立等效模型2)选择适当的分析工具)选择适当的分析工具侧重考虑以下几个
2、方面:侧重考虑以下几个方面:物理场耦合问题物理场耦合问题 大变形大变形 网格重划分网格重划分3)前处理)前处理(Preprocessing)-有限元建模有限元建模(Finite Element Modeling)建立几何模型建立几何模型(Geometric Modeling,自下而上,或基本单,自下而上,或基本单元组合元组合)有限单元定义、网格划分有限单元定义、网格划分(Meshing)与网格控制与网格控制 给定约束给定约束(Constraint)和载荷和载荷(Load)物理问题的综合分析物理问题的综合分析4)求解)求解(Solution)求解方法选择求解方法选择 计算参数设定计算参数设定 计
3、算控制信息设定计算控制信息设定5)后处理)后处理(Postprocessing)后处理的目的在于分析计算模型是否合理,后处理的目的在于分析计算模型是否合理,提出结论。提出结论。用可视化方法(等值线、等值面、色块图)分析计算结果,包括用可视化方法(等值线、等值面、色块图)分析计算结果,包括位移、应力、应变、温度等;位移、应力、应变、温度等;最大最小值分析;最大最小值分析;特殊部位分析。特殊部位分析。l 在有限元分析过程中,建模是其中最为关键的环节。因为:在有限元分析过程中,建模是其中最为关键的环节。因为:l 1.影响结果精度:有限元模型要为计算提供所有原始数据,影响结果精度:有限元模型要为计算提
4、供所有原始数据,这些输入数据的误差将直接决定计算结果的精度。如果模型本身这些输入数据的误差将直接决定计算结果的精度。如果模型本身不合理,即使计算算法再精确,也不可能得到高精度的分析结果。不合理,即使计算算法再精确,也不可能得到高精度的分析结果。因此,模型的合理性是决定结果精度的主要因素。因此,模型的合理性是决定结果精度的主要因素。l 2.影响计算过程:模型不仅决定计算精度,还影响计算的过程。影响计算过程:模型不仅决定计算精度,还影响计算的过程。对于同一分析对象,不同的模型所需要的计算时间和存储容量可对于同一分析对象,不同的模型所需要的计算时间和存储容量可能相差很大,不合理的模型还可能导致计算过
5、程死循环或终止。能相差很大,不合理的模型还可能导致计算过程死循环或终止。l 3.对人员要求高:由于分析对象的形状、工况条件、材料性质对人员要求高:由于分析对象的形状、工况条件、材料性质的复杂性,要建立一个完全符合实际的有限元模型是很困难的。的复杂性,要建立一个完全符合实际的有限元模型是很困难的。它需要综合考虑的因素很多,如形状的简化、单元类型的选择、它需要综合考虑的因素很多,如形状的简化、单元类型的选择、边界条件的处理等等,从而对分析人员的专业知识、有限元知识边界条件的处理等等,从而对分析人员的专业知识、有限元知识和软件使用技能等方面都提出了较高的要求。和软件使用技能等方面都提出了较高的要求。
6、l 4.花费时间长:建模所花费的时间在整个分析过程中占有相当花费时间长:建模所花费的时间在整个分析过程中占有相当大的比例。对分析人员来讲,他们的工作不是开发有限元分析软大的比例。对分析人员来讲,他们的工作不是开发有限元分析软件,而是如何利用软件(如件,而是如何利用软件(如ANSYS)分析他们所关心的结构。)分析他们所关心的结构。分析过程中,分析人员可把计算过程作为分析过程中,分析人员可把计算过程作为“黑匣子黑匣子”来对待,而来对待,而把精力主要集中在建模上。通常,建模所花费的时间约占整个分把精力主要集中在建模上。通常,建模所花费的时间约占整个分析时间的析时间的70%左右。因此,提高建模速度是缩
7、短分析周期的关键。左右。因此,提高建模速度是缩短分析周期的关键。l 有限元建模在一定程度上是一种艺术,是一种物体发生的物理有限元建模在一定程度上是一种艺术,是一种物体发生的物理相互作用的直观艺术。一般而言,只有具有丰富经验的人,才能相互作用的直观艺术。一般而言,只有具有丰富经验的人,才能构造出优良的模型。建模时,使用者碰到的主要困难是:要理解构造出优良的模型。建模时,使用者碰到的主要困难是:要理解分析对象发生的物理行为;要理解各种可利用单元的物理特性;分析对象发生的物理行为;要理解各种可利用单元的物理特性;选择适当类型的单元使其与问题的物理行为最接近;理解问题的选择适当类型的单元使其与问题的物
8、理行为最接近;理解问题的边界条件、所受载荷类型、数值和位置的处理有时也是困难的。边界条件、所受载荷类型、数值和位置的处理有时也是困难的。l建模的基本内容:建模的基本内容:l 1、力学问题的分析(平面问题、板壳、杆梁、实体、线性与非、力学问题的分析(平面问题、板壳、杆梁、实体、线性与非线性、流体、流固耦合线性、流体、流固耦合.)-取决于工程专业知识和力学素养。取决于工程专业知识和力学素养。l 2、单元类型的选择及特性定义(高阶元、单元类型的选择及特性定义(高阶元/低阶元?杆低阶元?杆/梁元?平梁元?平面面/板壳?板壳?.)-取决于对问题和单元特性的理解及计算经验取决于对问题和单元特性的理解及计算
9、经验l 3、模型简化(对称性、模型简化(对称性/反对称性简化、小特征简化、抽象提取、反对称性简化、小特征简化、抽象提取、支坐等简化)支坐等简化)l 4、网格划分(手工、半自动、自动,单元的形状因子?)、网格划分(手工、半自动、自动,单元的形状因子?)l 5、载荷、约束条件的引入(载荷等效、边界处理)、载荷、约束条件的引入(载荷等效、边界处理)l 6、求解控制信息的引入、求解控制信息的引入l有限元模型主要由三类数据组成:节点数据、单元数据和边界条有限元模型主要由三类数据组成:节点数据、单元数据和边界条件数据件数据 节点编号节点编号坐标值坐标值坐标参考系代码坐标参考系代码位移参考系代码位移参考系代
10、码节点数量节点数量单元编号单元编号单元节点编号单元材料特性码单元物理特性值码单元截面特性相关几何数据相关几何数据位移约束数据位移约束数据载荷条件数据载荷条件数据热边界条件数据热边界条件数据其他边界条件数据其他边界条件数据节点数据节点数据单元数据单元数据边界条件数据边界条件数据有限元模型有限元模型载荷、约束载荷、约束材料材料参数化实体造型参数化实体造型基于实体的物理模型基于实体的物理模型物理属性编辑器物理属性编辑器几何元素编辑器几何元素编辑器力学属性编辑器力学属性编辑器载荷、约束自动等效载荷、约束自动等效力学模型力学模型有限元模型有限元模型网格生成器网格生成器动力学问题动力学问题有限元计算有限元
11、计算静力学问题静力学问题有限元结果可视化有限元结果可视化计算参数及控制信息编辑计算参数及控制信息编辑力学问题描述与简化力学问题描述与简化单元组、子结构、单元选单元组、子结构、单元选择择支承连接方式模拟支承连接方式模拟装配应力等效等装配应力等效等对称对称/反对称简化反对称简化中线中线/中面提取中面提取小特征删除小特征删除/抑制抑制基于点线面的载荷基于点线面的载荷/约束约束计算方法计算方法/计算精度选择计算精度选择输入输入/输出控制输出控制手工编辑手工编辑/半自动半自动自动划分:三角形自动划分:三角形/四四面体、四边形面体、四边形/六面体六面体-模型模型物理量物理量(位移位移/应力应力/矢量矢量)
12、全局全局/局部局部显示显示面上面上/体内体内/截面截面/动态动态模型检查模型检查l1 1、保证计算结果的精度原则、保证计算结果的精度原则l 有限元分析的目的是要利用分析结果验证、修改或优化设计方案,如果有限元分析的目的是要利用分析结果验证、修改或优化设计方案,如果结果误差太大,有限元分析也就失去了实用价值,甚至会起到负作用,所以结果误差太大,有限元分析也就失去了实用价值,甚至会起到负作用,所以保证精度是建模时首要考虑的问题。当然,不同分析问题对精度的要求不一保证精度是建模时首要考虑的问题。当然,不同分析问题对精度的要求不一样,关键结构的精度要求可能高一些,非关键结构的精度要求则要低一些。样,关
13、键结构的精度要求可能高一些,非关键结构的精度要求则要低一些。l1)、误差分析)、误差分析物物理理离离散散误误差差离离散散误误差差几几何何离离散散误误差差模模型型误误差差边边界界条条件件误误差差结结果果误误差差单单元元形形状状误误差差舍舍入入误误差差计计算算误误差差截截断断误误差差l2)、提高精度措施)、提高精度措施lA、提高单元阶次、提高单元阶次 用于场函数和形状复杂的情况用于场函数和形状复杂的情况lB、增加单元数量、增加单元数量 一般增加数量可提高精度,但应注意精度随一般增加数量可提高精度,但应注意精度随数量增加是有限的。数量增加是有限的。lC、划分形状规则的单元、划分形状规则的单元 单元质
14、量是影响局部精度的主要因素,单元质量是影响局部精度的主要因素,如质量差的单元多,则会影响整体精度。如质量差的单元多,则会影响整体精度。lD、建立与实际相符的边界条件、建立与实际相符的边界条件 如边界条件不能正确模拟实际情如边界条件不能正确模拟实际情况则产生大的误差,甚至超过有限元本身带来的原理性误差。况则产生大的误差,甚至超过有限元本身带来的原理性误差。lE、减小模型规模、减小模型规模 计算误差与运算次数有关,利用降维和对称性计算误差与运算次数有关,利用降维和对称性等可减少规模。等可减少规模。lF、避免出现、避免出现“病态病态”方程组方程组 当总刚矩阵元素中各行或各列的值当总刚矩阵元素中各行或
15、各列的值相差较大时,则总刚近似奇异。此时必须对模型进行必要处理,相差较大时,则总刚近似奇异。此时必须对模型进行必要处理,以改变方程组的状态以改变方程组的状态l2 2、适当控制模型规模原则、适当控制模型规模原则l1)、规模对计算过程的影响)、规模对计算过程的影响lA、计算时间、计算时间 统计表明:求统计表明:求N个线性方程组的运算次数正比于个线性方程组的运算次数正比于N的三次幂,而半带宽的三次幂,而半带宽B存储时,正比于存储时,正比于N*B的平方。的平方。lB、存储容量、存储容量 lC、计算精度、计算精度 lD、其他、其他 网格划分、多工况计算网格划分、多工况计算l2)、降低模型规模的措施)、降
16、低模型规模的措施lA、几何模型的简化、几何模型的简化 lB、子结构、子结构 lC、分步计算、分步计算 即先粗后精,先整体后局部即先粗后精,先整体后局部lD、带宽优化和波前处理、带宽优化和波前处理 使带宽和波前最小使带宽和波前最小lE、主从自由度、主从自由度 在模型上选择部分典型自由度为主自由度,其余在模型上选择部分典型自由度为主自由度,其余为从自由度,然后将方程缩减到主自由度上,使方程降阶。为从自由度,然后将方程缩减到主自由度上,使方程降阶。l1 1、物理问题的力学描述、物理问题的力学描述l对于所计算的对象,先应分析清楚,给以归类:对于所计算的对象,先应分析清楚,给以归类:l1)平面问题)平面
17、问题l2)空间问题(轴对称问题)空间问题(轴对称问题)l3)板壳问题)板壳问题l4)杆梁问题)杆梁问题l如把复杂问题看得简单,会使许多应当考虑的因素没有考如把复杂问题看得简单,会使许多应当考虑的因素没有考虑影响精度虑影响精度l反之,把简单问题弄得复杂,会把某些次要因素没有略去,反之,把简单问题弄得复杂,会把某些次要因素没有略去,未突出主要因素,影响计算工作量未突出主要因素,影响计算工作量 l例:图示受弯曲作用的工字梁,其上下翼缘厚度较其高度例:图示受弯曲作用的工字梁,其上下翼缘厚度较其高度为小,且剪力可不考虑。为小,且剪力可不考虑。l受力分析:上拉下压,前后两面变形自由,表面应力为受力分析:上
18、拉下压,前后两面变形自由,表面应力为0l计算方案:计算方案:1)三维空间单元,计算量大)三维空间单元,计算量大l 2)梁单元,计算量小,但因腹板有孔,各个截)梁单元,计算量小,但因腹板有孔,各个截面的抗弯模量计算复杂,不易处理面的抗弯模量计算复杂,不易处理l 3)上下翼缘看作只受拉压的杆,腹板看作平面)上下翼缘看作只受拉压的杆,腹板看作平面应力。应力。LMMl2 2、力学问题的简化、力学问题的简化l根据计算结构的几何、受力及相应变形等情况,对其根据计算结构的几何、受力及相应变形等情况,对其相应的力学问题进行简化,从而达到减小计算时间和相应的力学问题进行简化,从而达到减小计算时间和存储空间的目的
19、。存储空间的目的。l具体方法有:具体方法有:lA A、降维处理、降维处理lB B、分步计算法分步计算法lC C、局部局部分析法分析法lD D、形式变换、形式变换lE E、对称性利用、对称性利用lF F、小特征删除、小特征删除lG G、抽象简化、抽象简化lH H、约束的等效处理、约束的等效处理 l1 1、降维处理、降维处理 降维处理是相对几何模型而言的,实际处理过程中,必降维处理是相对几何模型而言的,实际处理过程中,必须根据分析对象的力学特性及工作精度要求等来判定是须根据分析对象的力学特性及工作精度要求等来判定是否将三维问题降为二维或一维问题处理。降维处理的前否将三维问题降为二维或一维问题处理。
20、降维处理的前提是降维后所得到的计算结果仍满足工程精度要求,而提是降维后所得到的计算结果仍满足工程精度要求,而分析计算量可大大减少。常见的降维处理有:分析计算量可大大减少。常见的降维处理有:A)A)轴对称问题轴对称问题 如飞轮问题或轮与轴的配合问题,轴对如飞轮问题或轮与轴的配合问题,轴对称性压力容器、螺杆螺牙或螺栓与螺母联接问题,汽缸称性压力容器、螺杆螺牙或螺栓与螺母联接问题,汽缸套和气门等。套和气门等。B)B)板壳问题板壳问题 如薄壳类,板结构类,箱体类(机床床身、如薄壳类,板结构类,箱体类(机床床身、大梁等)大梁等)C)C)平面问题平面问题 如直齿轮,轧辊,连杆如直齿轮,轧辊,连杆D)D)杆
展开阅读全文