重点小学数学应用题常用公式大全(DOC 16页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《重点小学数学应用题常用公式大全(DOC 16页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 重点小学数学应用题常用公式大全DOC 16页 重点 小学 数学 应用题 常用 公式 大全 DOC 16 下载 _其他_数学_小学
- 资源描述:
-
1、精心整理小学数学应用题常用公式大全1、【和差问题公式】(和+差)2=较大数;(和-差)2=较小数。2、【和倍问题公式】和(倍数+1)=一倍数;一倍数倍数=另一数,或和-一倍数=另一数。3、【差倍问题公式】差(倍数-1)=较小数;较小数倍数=较大数,或较小数+差=较大数。4、【平均数问题公式】总数量总份数=平均数。5、【一般行程问题公式】平均速度时间=路程;路程时间=平均速度;路程平均速度=时间。6、【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:(速度和)相遇(离)时间=相遇(离)路程;相遇(离
2、)路程(速度和)=相遇(离)时间;相遇(离)路程相遇(离)时间=速度和。7、【同向行程问题公式】追及(拉开)路程(速度差)=追及(拉开)时间;追及(拉开)路程追及(拉开)时间=速度差;(速度差)追及(拉开)时间=追及(拉开)路程。8、【列车过桥问题公式】(桥长+列车长)速度=过桥时间;(桥长+列车长)过桥时间=速度;速度过桥时间=桥、车长度之和。9、【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)2=船速;(顺水速度-逆水速度)2=水速。(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3
3、)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。10、【工程问题公式】(1)一般公式:工效工时=工作总量;工作总量工时=工效;工作总量工效=工时。(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;1单位时间能完成的几分之几=工作时间。(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)11、【盈亏问题公式】(1)一次有余
4、(盈),一次不够(亏),可用公式:(盈+亏)(两次每人分配数的差)=人数。例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”解(7+9)(10-8)=162=8(个)人数108-9=80-9=71(个)桃子或88+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)(两次每人分配数的差)=人数。例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”解(680-200)(50-45)=4805=96(人)4596+680=5000(发)或5096+200=500
5、0(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)(两次每人分配数的差)=人数。例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”解(90-8)(10-8)=822=41(人)1041-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏(两次每人分配数的差)=人数。(例略)(5)一次有余(盈),另一次刚好分完,可用公式:盈(两次每人分配数的差)=人数。(例略)?12、【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔
6、数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-236)(4-2)=14(只)兔;36-14=22(只)鸡。解二(436-100)(4-2)=22(只)鸡;36-22=14(只)兔。(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔
7、脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个
8、不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(41000-3525)(4+15)=47519=25(个)解二1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总
展开阅读全文