数学基础知识与典型例题不等式参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数学基础知识与典型例题不等式参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 基础知识 典型 例题 不等式 参考 模板 范本
- 资源描述:
-
1、数学基础知识与典型例题第六章不等式不等式知识关系表不等式的性质不等式的性质(对称性或反身性);(传递性);(可加性),此法则又称为移项法则;(同向可相加)(可乘性) . (正数同向可相乘)(乘方法则)(开方法则)(倒数法则)掌握不等式的性质,应注意:条件与结论间的对应关系,是“”符号还是“”符号;运用不等式性质的关键是不等号方向的把握,条件与不等号方向是紧密相连的。 运用不等式的性质可以对不等式进行各种变形,虽然这些变形都很简单,但却是我们今后研究和认识不等式的基本手段.例1. “a+b2c”成立的一个充分条件是( )(A)ac或bc (B)ac且bc且bc (D)ac或bb,下列式子中; a
2、3b3;, 正确的有( )(A)1个 (B)2个(C)3个 (D)4个例3.的大小关系为 .例4. 设,且则与的大小关系是 .例5. 已知满足, 试求的取值范围.重要不等式1.定理1:如果a,bx|x是正实数,那么(当且仅当a=b时取“=”号).注:该不等式可推出:当a、b为正数时,(当且仅当a = b时取“=”号)即:平方平均数算术平均数几何平均数调和平均数2.含立方的几个重要不等式(a、b、c为正数): 由可推出(,);如果a,b,cx|x是正实数,那么.(当且仅当a=b=c时取“=”号)3.绝对值不等式:注:均值不等式可以用来求最值(积定和小,和定积大),但特别要注意条件的满足:一正、二
3、定、三相等.例6.“a0且b0”是“”的( )(A)充分而非必要条件 (B)必要而非充要条件(C)充要条件 (D)既非充分又非必要条件例7. 若, A, G,H,其中R+,则A,G,H的大小关系是( )(A)AGH (B)AHG(C)HGA (D)GHA例8.若,且,那么有最小值( )(A)6 (B)9 (C)4 (D)3例9. 不等式的最大值是( )(A)(B)(C)(D)例10. 若a +b +c = 3,且a、b、cR+,则的最小值为 .不等式解法解不等式是寻找使不等式成立的充要条件,因此在解不等式过程中应使每一步的变形都要恒等。一元一次不等式和一元二次不等式是最简单的不等式.其它不等式
4、,如高次不等式、分式不等式、无理不等式、指数和对数不等式、绝对值不等式、含有字母系数的不等式等,一般都转化为一元一次不等式(组)或一元二次不等式(组)来解。解不等式时,要注意不等式的同解原理和变形过程的等价性的正确运用,对各类不等式要掌握它的特点,变形过程的程序性和特殊性,注意归纳解各类不等式的思路和方法。(1)高次不等式若可以分解成几个含x的一次因式,可用列表法或数轴标根法来解。(2)分式不等式要正确运用以下同解原理。(3)无理不等式: 将无理不等式变形为与它同解的不等式组。不等式的同解不等式组是不等式的同解不等式组是(4)指数、对数不等式指数不等式的同解不等式:当时,为;当时,为.例11.
5、若关于的不等式的解集是,则等于( ) 例12.不等式的解集是( ) 例13. 不等式的解集是( ) 例14. 不等式的解集是( )(A) (B)或(C) (D)或不等式解法对数不等式的同解不等式:当时,为;当时,为因此,在解指数、对数不等式时,首先要注意利用对数的性质化为同底不等式.(5)绝对值不等式解绝对值不等式关键是化为等价的不含绝对值符号的不等式(组),主要方法:对含有几个绝对值符号的不等式,用分区间的方法化为等价的不含绝对值的不等式组。注:绝对值的几何意义: 表示数轴上的数对应的点与原点的距离.表示数轴上的数对应的点与数对应的点的距离.(6)含字母系数的不等式对上述各类不等式,都可能涉
6、及到不等式中的字母系数,解不等式时,对字母的取值要进行恰当的分类,分类时要不重、不漏,然后根据分类进行求解。注: 解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。例15.不等式的解集是_.例16. 解不等式例17. 解关于x的不等式不等式的证明不等式的证明1.证明不等式的基本依据:(1)实数大小的比较原则;(2)不等式的性质;(3)几个重要不等式,特别是算术几何平均值不等式(4)已知函数的增减性;(5)实系数一元二次方程的根的判别式.例18. 已知xR,求证:20ab,欲证ab只需证ab0;作商比较,要点是:作商变形判断。这
7、种比较法是有条件的,这个条件就是“除式”的符号一定。当b0时,ab1。比较法是证明不等式的基本方法,也是最重要的方法,有时根据题设可转化为等价问题的比较(如幂、方根等)。分析法:就是不断寻找并简化欲证不等式成立的充分条件,到一个明显或易证其成立的充分条件为止。对于思路不明显,感到无从下手的问题宜用分析法探究证明途径。这种方法的实质是“充分条件”的化简。 分析法证明不等式的逻辑关系是:.分析法的思维特点是:执果索因综合法:就是从已知的不等式及题设条件出发,运用不等式性质及适当变形(恒等变形或不等变形)推导出要求证明的不等式。用综合法证明不等式的关键是适当选择一个已知的不等式,从此出发推出所证结果
8、,怎样选择已知的不等式就适当呢?一般有两条途径。(1)从分析法找思路,(2)从“重要不等式”,特别是平均值不等式找思路。用综合法证明不等式的逻辑关系是:.综合法的思维特点是:由因导果放缩法若证明“AB”,我们先证明“AC”,然后再证明“CB”,则“AB”。例19. 若求证:.例20. 设,且,求证:例21. 设 用放缩法证明:.不等式的证明用数学归纳法证明不等式:有关自然数的命题,(当然这里是不等式)可用数学归纳法证明。有关自然数的命题成立的条件有二:一是它必需具备特殊性,二是它必需具备递推性。数学归纳法就是证明有关自然数的命题具有上述两条性质,从而确定其正确性。用代数方法证明不等式是考查思维
展开阅读全文