最新人教版初中数学八年级下册-161-二次根式课件1-1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新人教版初中数学八年级下册-161-二次根式课件1-1.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 初中 数学 年级 下册 161 二次 根式 课件 下载 _八年级下册_人教版(2024)_数学_初中
- 资源描述:
-
1、什么是一个数的算术平方根?如何表示?什么是一个数的算术平方根?如何表示?正数的正的平方根叫做它的算术平方根。正数的正的平方根叫做它的算术平方根。什么叫做一个数的平方根?如何表示?什么叫做一个数的平方根?如何表示?一般地,若一个数的平方等于一般地,若一个数的平方等于a,则,则这个数就叫做这个数就叫做a的平方根。的平方根。用用 (a0)表示。表示。a0 0的算术平方根平方根是的算术平方根平方根是0 0a a的平方根是的平方根是a复习复习1、如果、如果 ,那么,那么 ;42xx2、如果、如果 ,那么,那么 ;32xx3、如果、如果 ,)0(2aaxx那么那么 。x2 23a1.1.如图所示的值表示正
2、方形的如图所示的值表示正方形的面积,则正方形的边长是面积,则正方形的边长是 3b b-32.要修建一个面积为要修建一个面积为6.28m2的圆形喷水池,的圆形喷水池,它的半径为它的半径为 m m(取取3.143.14);23、关系式中、关系式中 ,用含有,用含有h的式子的式子表示表示t,则,则t为为 。25th 5h导入导入新授新授:观察以上各式,它们有什么共同特点?观察以上各式,它们有什么共同特点?表示一些正数的算术平方根表示一些正数的算术平方根3b 25h25002a 25002a3b 表示一些表示一些正数正数的的算术平方根算术平方根.的式子叫做二次根式形如 a)0(a你认为所得的各代数式有
3、哪些共同特点?你认为所得的各代数式有哪些共同特点?a被开方数被开方数二次根号二次根号25h归纳归纳:二次根式的定义二次根式的定义(默默1)一般地,形如一般地,形如 的式子的式子叫二次根式。叫二次根式。)0(aa 本课学习目标:(1 1)二二次次根根式式的的概概念念(双双重重非非负负性性)(2)根号内字母的取值范围)根号内字母的取值范围(3)二次根式的性质)二次根式的性质(1,2)请你凭着自己已有的知识请你凭着自己已有的知识,说说说对二次根式说对二次根式 的认识!的认识!a?(0).a a 形 如的 式 子 叫 做 二 次 根 式2.a可以是数可以是数,也可以是式也可以是式.3.形式上含有二次根
4、号形式上含有二次根号4.a0,0 a5.既可表示开方运算既可表示开方运算,也可表示运算的结果也可表示运算的结果.1.表示表示a的算术平方根的算术平方根(双重非负性双重非负性)1a如:如:这类代数式只能称为含有二次根这类代数式只能称为含有二次根式的代数式,不能称之为二次根式;式的代数式,不能称之为二次根式;而而 这类代数式,应把这类代数式,应把 这些二次根式看这些二次根式看做系数或常数项,整个代数式仍看做整式。做系数或常数项,整个代数式仍看做整式。3222xx3,2说一说说一说:下列各式是二次根式吗下列各式是二次根式吗?3 32 25 5 (7 7),a a (6 6),x xy y (5 5)
5、m m-(4 4),1 12 2 (3 3)6 6,(2 2),3 32 2 (1 1)1(m0),(m0),(x,y(x,y 异号异号)在实数范围内在实数范围内,负数没有平方根负数没有平方根219a222 aax)0(x23m1 1、判断下列代数式中哪些是二次根式?、判断下列代数式中哪些是二次根式?1(3)aa 16例例1 x为何值时,下列各式在实数范围内有意义。为何值时,下列各式在实数范围内有意义。(1)5x(2)13x(3)13xx例题讲解例题讲解(3)由题意可知:)由题意可知:5x 0301xx1313xx1313x15x 1)由)由x-50,得得x 5当当 x 5时,时,有意义有意义
6、(2)由)由1-3x0得得x当当 x 时,时,有意义有意义当当-1 x 3时,时,有意义;有意义;解:解:(变式:变式:15x50105xx15x51x当当x取何值时,取何值时,在实数范围内有意义。(默在实数范围内有意义。(默2)当当x5时,时,在实数范围内有意义。在实数范围内有意义。x-5 0解:由题意得解:由题意得2x15解:由题意得,2020202xxxx5555(默(默3)求下列二次根式中字母求下列二次根式中字母 的取值范围(默的取值范围(默4)(1)(1)解:解:字母字母 a a 的取值范围是全体实数的取值范围是全体实数 a(1)无论无论 取何值,取何值,都有都有a210a 字母字母
7、 的取值范围是全体实数的取值范围是全体实数.aa字母字母 的取值的取值范围是全体实数范围是全体实数.22222(21)1(1)10aaaaa2a2)1(a(2)2a(2)解:解:-02a002aa02a2)1(a(a为任何实数)(a=1)(a=1)说明说明:1.1.当被开方数本身为当被开方数本身为非负数或能化为非负非负数或能化为非负 数形式时数形式时,其字母的取值范围为:,其字母的取值范围为:全体全体实数实数;2.2.当被开方数本身为当被开方数本身为非正数或能化为非正数形式时非正数或能化为非正数形式时,其字母的取值范围为:使,其字母的取值范围为:使被开方数为被开方数为0 0的值。的值。(a为任
8、何实数)求下列二次根式中字母的取值范围:求下列二次根式中字母的取值范围:11a a2112 233a解:(1)由题意得:10a 1a 即当 时,1a 1a 有意义.求字母的取值范围的口诀(默求字母的取值范围的口诀(默5)从左看到右从左看到右;从上看到下从上看到下看到分数线看到分数线,分母不为分母不为0 0(2)(3)为任意实数a12a 看到偶次根式看到偶次根式,被开方数大于等于被开方数大于等于0 0看到看到0 0指数指数,底数不为底数不为0 0最后画数轴最后画数轴,写出解集来写出解集来xx1)4(4)3(2 1、x取何值时取何值时,下列二次根式有意义下列二次根式有意义?xx3)2(1)1(1x
9、0 x为全体实数x0 x3)5(x0 x21)6(x0 x01(2)3xxx(7)1,2xx 且2xx(8)0 x 1)9(2x为全体实数x参考图参考图1-2,完成以下填空完成以下填空:22212_;7_;_.22712一般地一般地,二次根式有下面的性质二次根式有下面的性质:快速判快速判断断 222222113_,2_,32_,73245_,5_.3 532712323aa?94161517)0(2aaaaa2)(2222_,5_,0_,|2|_;|5|_;|0|_.请比较左右两边的式子请比较左右两边的式子,议一议议一议:与与 有什么关有什么关系系?当当 时时,;当当 时时,2a|a2_;a2
10、_.a0a 0a 225500aa)0(0(2aaaaaa)aa22)2)(1(2)2)(2(2)2()3(2)2()4(22)5(2)2()6(22-2|-2|=2|2|=2-|-2|=-2大家抢答大家抢答23_22_,725_21_22_5132527512524_4 4 21(1)xx1x?)(22有区别吗与aa2.2.从取值范围来看从取值范围来看,2a2a a a00a a取任何实数取任何实数1:从运算顺序来看从运算顺序来看,2a2a先开方先开方,后平方后平方先平方先平方,后开方后开方=a aa a (a a 0)0)3.从运算结果来看从运算结果来看:2a2a-a a (a a0)0)
11、=a a比较分析比较分析 和和2a2a读法读法运算顺序运算顺序a的取值范围的取值范围运算结果运算结果2a2a先开方先开方,后平方后平方先平方先平方,后开方后开方a0a0a a取全体实数取全体实数a a a a 根号根号a a的平方的平方根号下根号下a a平方平方二次根式的性质及它们的应二次根式的性质及它们的应用用:(1)(2)2aaa0-a(a 0)(a=0)(a 0)(x0)讨论与思考讨论与思考将下列各式化简:将下列各式化简:)21()1(x原式12 1 x2)(:yx原式解xy 2223yxyxyx yx 0yx)yx(原式42例例3 3、化简及求值:、化简及求值:(1)(2)(3)(1)
12、(2)(3)(a a0,b0,b0 0)(4)(4)其中其中a=a=(5)(5)4a22a b21 2aa22)12()21(342(1)(2)(3)(1)(2)(3)(a a0,b0,b0 0)(4)(4)其中其中a=a=(5)(5)4a22a b21 2aa22)12()21(422解:原式22aa解:原式ab解:原式1)1(:2aa原式解2212121221解:原式0,0ba0abab 原式31313133)(时,原式当a解:原式=22(3)(1)xx=|x-3|+|x+1|x-3|+|x+1|-1x3,x-3-1x00,x+10原式原式 =(3-x)+(x+1)=4=(3-x)+(x+
13、1)=4_,4)4(2的取值范围是则思考:若mmmmm4?)4(24m404mm41682mmm(默(默7)(默(默8)1.若若 ,则则x的取值范围为的取值范围为 ()xx1)1(2(A)x1 (B)x1 (C)0 x1 (D)一切有理数一切有理数A2.实数实数a、b、c在数轴上的位置如图所示,化简在数轴上的位置如图所示,化简 22()()abbccaabc2()b c a 2()c a b 2()b c a 3.3.已知已知a a,b b,c c为为ABCABC的三边长,化简:的三边长,化简:+-0)(,0)(,0,acbbacacbcba是三角形三边这一类问题注意把二次根式的运算搭载在三角
14、形三边之间的关系这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。这个知识点上,特别要应用好。acbbacacb解:原式cabacbcbaacb3原式(默(默9)化简化简xx1)312(4.化简化简 222)1(pp)2(1pp解:原式121pp202pp22)()1(aaaa1解:原式121aaa31031xx(默(默10)归纳归纳二次根式的非负性:二次根式的非负性:0a二次根式的双重非负性:二次根式的双重非负性:00aaa()(),时时,、当当yxyx0311的的值值。求求、已已知知xyzzyx02365223.3.根据非负数的性质,就可以确定字母的值根据
展开阅读全文