书签 分享 收藏 举报 版权申诉 / 27
上传文档赚钱

类型《高数双语》课件section 11.2.pptx

  • 上传人(卖家):momomo
  • 文档编号:5900320
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:27
  • 大小:1.57MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 11.2.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 11.2 双语 课件 section
    资源描述:

    1、Section 11.21The Relation between Line Integrals of Second Type and Double IntegralsSimply connected domainMultiply connected domainPositive direction of(C)23The Relation between Line Integral of Second Type and Double IntegralGreen,George(1793-1841),English mathematician and physicist Greens Theore

    2、mTheorem Suppose there is a closed bounded domain(1)(,),(,)().P x y Q x yC bounded by a piecewise smooth simple curve(C),and functions 2R Then the following relation holds:,CQPdP x y dxQ x y dyxy indicates that the integration is C where in the positive direction of(C).4The Proof of Greens TheoremPr

    3、oofi)Suppose that the domain()can be expressed as12()(),.xyxxycydand12()(),yxyyxaxbThen 21()()()byxayxPPddxdyyy 21,(),().baP x yxP x yxdx On the other hand,()()(,)CPP x y dxdy (,)(,),ACBBDAP x y dxP x y dx 21,(),().baP x yxP x yxdx 12,(),()baabP x yxdxP x yxdx()(,)CP x y dx 5The Proof of Greens Theo

    4、remProof(continued)Similarly,we have21()()()dxycxyQQddydxxx 21(),(),dcQ xyyQ xyydy and(,)(,),DACCBDQ x y dyQ x y dy 21(),(),.dcQ xyyQ xyydy 12(),(),cddcQ xyy dyQ xyy dy()(,)CQ x y dy ,.CQPdP x y dxQ x y dyxy Therefore,6The Proof of Greens TheoremProof(continued)ii)Suppose that the domain(s)can be di

    5、vided into some subdomainsdomain is type of domain in condition i).Since the sum of line integral of second typeover the common edges of these subdomainsis zero,we can obtain QPdxy ,.CP x y dxQ x y dy ()(1,2,3)ii by a line parallels to y axis or parallels to x axis,each7The Relation between Line Int

    6、egral of Second Type and Double IntegralCorollary Greens formula still holds if ()is a multiply connected domain bounded by finite number of piecewise smooth simple closedcurves.12.CCQPdPdxQdyPdxQdyxy 8Use Greens Theorem to Find the Line Integral of the Second TypeSolution then,by Greens Theorem,and

    7、(),Qxy Since()Pxy where(C)is22221.xyab()()(),CIxy dxxy dy Example FindWe have()()2QPIdxdydxdyxy 2.ab 22()CIxy dxx ydy ()QPdxy ()4xy dxdy 22004cossinadr rdr cos,sin0,02x ry rr a 0.Example Find where(C)is222.xya22(),CIxy dxx ydy then,by Greens Theorem,we haveSolution and2,Qx y Since 2Pxy Use Greens Th

    8、eorem to Find the Line Integral of the Second Type9Example Evaluate where(C)is(1)the circle with positive direction.(2)the above half circle form A(R,0)to B(-R,0).22(),CIxy dyx ydx 222xyR22yRx10Find Area of a Region by Line Integrals of Second typeNote If(,)Q x yx,we can calculate the area of(,)P x

    9、yy anda region(s),which is bounded by(C),by()()1.2Cdxdyxdyydx Example Find the area of the starlike shape33cos,sin.xat ybtSolution Area()12Cxdyydx 2220133cossin.28abttdtab 24242013cossin3sincos2abttdtabttdt 11Path IndependenceIf A and B are two points in an open region D in space,the workFrd done in

    10、 moving a particle from A to B by a field F defined on D usually depends on the path taken.,where(C)is show in the figure.12223()04sin(sin).3Cy dxaada For example,find the integral then2(),CIf the path from A to B is22()00.aCay dxdx If we take path then1(),C2()Cy dx Path IndependenceFor some kinds o

    11、f line integrals of the second type,the value of the integral depends only on the initial point A and the terminal point B and is independence of the path of integration.Question When will the line integral of the second type independent on the path taken?,where(C)isFor example,find the integral 322

    12、()23Cyx dyx y dx show in the figure.If the path from O to B isthen1(),COB1():Cyx 22():Cyx xyA3()COAOB 13226()02371Cyx dyx y dxx dxIf the path from O to B isthen2(),C13224()02351Cyx dyx y dxx dxIf the path from O to B isthen3(),C1322()023021Cyx dyx y dxydyPath IndependenceProof We will prove these st

    13、atements in the order 1231.Theorem 12.2.6u is called a potential function of F=(P,Q)on D.14Path IndependenceProof(continued)12Suppose that A and B are two points in(),We travel from A to B by taking two arbitrary curvesIf these(),inside.AQBdenote by APBandtwo curves do not intersect,then by proposit

    14、ion 1 .APBBQAAQBPdxQdyPdxQdyPdxQdy Therefore 0.APBBQAAPBQAPdxQdyPdxQdyPdxQdy If these two curves have a intersection other than A and B,we also havethe conclusion.15Path IndependenceProof(continued)and 00(,)()A xy We take any point 00(,)(,)(,).x yxyu x yPdxQdy form the line integral with variable up

    15、per limit we denote this integral by 232,under proposition 00(,)(,),x yxyPdxQdy ,.uuPQxyWe will prove that duPdxQdyorIn fact,by the definition of the partial derivative of u,we have0(,)(,)lim,xuu xx yu x yxx while 0000(,)(,)(,)(,)(,)(,).xx yx yxyxyu xx yu x yPdxQdyPdxQdy 16Path Independencewe have2,

    16、By proposition (,)(,)xx yxxx yxPdxQdyPdxThen (,)(,)(,)(,).xx yx yu xx yu x yPdxQdy (,),01.P xx yx ,we have(,)P x yThus,by the continuity of 00(,)(,)limlim(,)(,).xxuu xx yu x yP xx yP x yxx Then the proposition has been proved.(,).uQ x yy Similarly,we haveProof(continued)17Path IndependenceProof(cont

    17、inued)31Suppose that(C)is an arbitrary piecewise smooth simple closed curve,whose equations are(),(),xx tyy t()(),()().xxyy()tThen and ()(),()()(),()()CPdxQdyP x ty tx tQ x ty ty tdt (),()du x ty tdtdt (),()0.u x ty t u dxu dydtx dty dt Finish.Path Independence18Theorem Let ()be a simply connected d

    18、omain in the plane,11110000(,)(,)(,)1100(,)(,)(,)(,)x yx yx yx yPdx Qdyu x yu x yu x y If the line integral1100(,)(,)x yx yIPdx Qdy ,P QC is independent of the path,thenTheorem Let()be a simply connected domain in the plane,P Q,(,)().PQx yyx then The three propositions in last theorem are true ,PQCy

    19、x 19Path IndependenceDefinition Path Independence and Conservative FieldLet F be a field defined on an open region D in space and suppose thatFrd A to B is the same over all paths from A to B.Then the integraldone in moving from for any two points A and B in D,the workFrBAd is path independent in D

    20、and the field is conservative on D.Under conditions normally met in practice,a field F is conservative if and only if it is the gradient field of a scalar function f;that is if and only The function f is then called a potential functionFf if for some f.for F and we have the following equivalent stat

    21、ements:20Path IndependenceExample Find the integral(1,1)(0,0)()().xy dxdy Solution then,we have(,),Q x yyxSince(,)P x yxyand1.PQyx Therefore,the integral does not dependent on the path taken,then wetake path(0,0)(0,1)(1,1),1100(0,)(,1)IQy dyP xdy1100(1)ydyxdx1110.22Finish.21Path IndependenceMethods

    22、for finding potential functionsLet()be a simply connected domain in the plane,A(M)=(P,Q)be a vector field,.PQCyx If there exists a function of two variables,u(x,y)such that(,)uQ x yy (,),uP x yx or(,)(,)duP x y dxQ x y dythen function u(x,y)is called the potential function of A(M),and the vector fie

    23、ld A(M)is called a potential field.a primitive function of the total differential Pdx+Qdy How to find the potential functions?22Path IndependenceExample Verify that the vector field 222(36,33)Axxyyxis a potential field and find its potential function.Solution Method 1(by line integrals)Method 2(by p

    24、artial integrals)Method 3(combining terms into total differentials)23Path Independencesuch that2(2).()xy dxydyduxy Example Does there have a function (,),u x yIf so,find it.Solution 3322,.()()PyQyyxyxxy thenand2(,),()yQ x yxy Let 22(,)()xyP x yxy are both continuous,PQyxIn the domain of 0 xy0,xyorTh

    25、en there must exist a functionand equal.such that(,),u x y2(2)?()xy dxydyduxy 24Path IndependenceSolution(continued)(,)2(1,0)(2)(,)()x yxy dxydyu x yxy 10lnlnyexxxyxy 2101()xyydxdyxxy(,)ln.yu x yxyCxy ln1xxyxy thenSo,lnyxyxy Finish.25Path IndependenceExample Find the integral(1,0)122(0,1),xdxydyIxy

    26、and222()CxdxydyIxy where(C)is221.xy26Path Independence(0)0,1.2 Solution then2(,),P x yxy(,)(),Q x yyx Let 2()2,Pxyxyyy()(),Qyxyxxx Since the integral is independent on the path,we have.PQyx we have2().xxC That is()2yxxy and then Since 0.C Therefore,is independent 2()Lxy dxyx dy Example Suppose that

    27、the integralon the path taken,where has continuous derivative,and Find(0)0,(1,1)2(0,0)().xy dxyx dy (1,1)2(0,0)()xy dxyx dy (1,1)22(0,0)xy dxx ydy Finish.ReviewGreens formulaUsing Greens formula to find the line integral of the second typeConditions for path independence of a line integralPotential function and potential field(methods for finding potential functions)27

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 11.2.pptx
    链接地址:https://www.163wenku.com/p-5900320.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库