《高数双语》课件section 8.3.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 8.3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 8.3 双语 课件 section
- 资源描述:
-
1、Section 8.312Equations for Planes in SpaceA plane in space is determinedby knowing a point on the planeand its“tilt”or orientation.(,)P x y zThen M is the sets of all points for whichSuppose that plane M passes through a pointnijk.ABCand is normal(perpendicular)to the nonzero vector0000(,)P xy z0P P
2、uuu vis orthogonal to n.3Equations for Planes in Space(,)P x y zPlane M is the sets of all points0P Puuu vfor whichis orthogonal to n.Thus,the dot product0n0.P Puuu vThis equation is equivalent to000(ijk)()i()j()k0ABCxxyyzzor000()()()0.A xxB yyC zzPoint normal form(点点法式法式):scalar equation of the pla
3、ne4Equation for a planehas0000(,)P xy zThe plane throughnijkABCnormal toComponent equation simplified:0n0P PuuuuvVector equation:000()()()0A xxB yyC zzComponent equation:0,AxByCzDwhere000()DAxByCz Two planes are parallel if and only if their normals are parallel,or12nnk for some scalar k.Equations f
4、or Planes in Space5Finding an Equation for a planeperpendicular to0(3,0,7)P Example Find an equation for the plane throughn5i2j k.Solution The component equation is515270 xyz Simplifying,we obtain5(3)2(0)(1)(7)0.xyz Finish.5222.xyz 0n0P Puuuuv6Equations for Planes in SpaceGeneral Equation for a plan
5、eThe equation can be rewritten in the form0,AxByCzDwhere000()DAxByCz Therefore,the equation of any plane is a linear equation in threeConversely,any linear equation in three variables representsvariables.if A,B,C are not all 0.n(,),A B C a plane with normal vectorthe equation can be written as0,C In
6、 fact,if(0)(0)0.DA xB yC zC 7Some Planes with Special Locations (1)If a given plane passes through the origin(0,0,0),Othen0 xyzsatisfy the general equation for the plane,so that0.D Therefore,the equation of the plane through the origin is0.AxByCzOxyz8OxyzSome Planes with Special Locations(2)If a giv
7、en plane is parallel to the z-axis,andn k0.CTherefore,the equation of this plane isn(,)A B C k(0,0,1),is orthogonal to 0.AxByD0,0,ByCzDAxCzDSimilarly,the equations of planes whichare parallel to the x-axis or y-axis arerespectively.nthen the normal vector9OxyzSome Planes with Special Locations (3)If
8、 a given plane is orthogonal to the z-axis,0.ABTherefore,the equation of this plane is0CzD0,0,AxDByDSimilarly,the equations of planes whichare orthogonal to the x-axis or y-axis arerespectively.and so 0.DzzC orn0zn/kthen10Intercept Form of the Equation for a PlaneExample Review the example of findin
9、g the equation of plane throughand(0,0,1),A(2,0,0)B(0,3,0).CSolution is any point in the plane,Suppose that(,)P x y z(0,3,1)AC uuu v(,1)APx y zuuu v(2,0,1)AB uuu vSince these three vector are coplanarif and only if the point P lies in the plane,0,AP AB AC uuu v uuu v uuu v(0,3,0).C(0,0,1),A(2,0,0)Bx
10、yzO(,)P x y zthenso we have11Intercept Form of the Equation for a PlaneSolution(continued)(0,3,0).C(0,0,1),A(2,0,0)Bthat is 12010.031xyz Expanded the determinant on the leftside of above equation,we have3266,orxyzxyzO(,)P x y zFinish.Example Review the example of finding the equation of plane throug
11、hand(0,0,1),A(2,0,0)B(0,3,0).C1.231xyz12Intercept Form of the Equation for a PlaneIf the intercepts of the plane with the x-axis,y-axis and z-axis(0,0)Bb(0,0,)Cc(,0,0)A afor the plane1.yxzacband,OAa OBb are,OCc Then,just as the lastrespectively.example,we can obtain the equationxyzO(,)P x y z13Angle
12、 Between Planes(两平面的夹角两平面的夹角)1 1n2nThe angle between two intersectingplanes is defined to be the(acute)angle determined by the normalvectors as shown in the figure.Let 22222:0.A xB yC zD 11111:0,A xB yC zD 2 and1111n(,)A B C There normal vectors can be chosen asThen 2222n(,),A B C respectively.12121
13、21222222212111222|nn|cos.|n|n|A AB BC CABCABC 14If two planes are parallel or orthogonal,their normal vector alsoparallel or orthogonal.2 1212120.A AB BC C12 12nn2 111222.ABCABC12/12n/n1 2n1n1 2n1nAngle Between Planes15Position Relationships between two PlanesExample Discuss the position relationshi
14、ps between thefollowing planes:12(1):210,:310 xyzyz Solution(1)Since 22222|1 02 11 3|cos(1)2(1)13 then these two planes intersect and the angle between them is1.60 1arccos.60 16Solution(2)Since 12,1,1,n 2 4,2,2n and211,422 then these two planes are parallel.Again,since1(1,1,0)M but2(1,1,0),M these t
15、wo planes are not same.Position Relationships between two PlanesExample Discuss the position relationships between thefollowing planes:12(2):210,:42210 xyzxyz 1712(3):210,:42220 xyzxyz Solution(3)Since 211,422 these two planes are parallel.Again,since1(1,1,0)M and2(1,1,0),M these two planesare same.
16、Finish.Example Discuss the position relationships between thefollowing planes:Position Relationships between two Planes18Example Find an equation for the plane that passes throughand is parallel to the plane(1,2,0)the point13460.2xyzSolution Let the normal vector to the plane be n;thenn(1,6,8)can be
17、 taken as the normal1n/,3,42 and soorThus the equation of the plane is68110.xyzvector of.(1)6(2)8(0)0 xyzFinish.Position Relationships between two Planes19Since the two point P1 and P2 lie in the plane,we haveSolution(I)be the equation for the plane.0AxByCzDLet0.ABC0.ABCDand20,ACDExample Find an equ
18、ation for the plane that passes throughThe two pointsand is perpendicular to the plane2(1,1,1),P1(1,0,2),P 10.xyz 10,xyz Because is perpendicular to the planewe havePosition Relationships between two Planes202300,CxCyCzSolution(I)Example Find an equation for the plane that passes throughThe two poin
19、tsand is perpendicular to the plane2(1,1,1),P1(1,0,2),P 10.xyz Therefore,the equation for isPosition Relationships between two Planes2020300ACDACABCDBCABCD 230.xyzThat is21Thus,the equation of the plane is230.xyzSolution(II)Let the normal vector to the plane be n.Then 12n,P P uuuu v12(2,1,1).P P uuu
20、u vwhere by the given conditions,thenn(1,1,1)Also,(2,3,1).12n(1,1,1)P Puuuu vijk211111Finish.Position Relationships between two PlanesExample Find an equation for the plane that passes throughThe two pointsand is perpendicular to the planeP2(1,1,1)1(1,0,2),P 10.xyz 22xyzOEquations for Lines in Space
21、In the plane,a line is determined by a point and a numberAnalogously,in space a line is determined by a point andgiving the slope of the line.L0000(,)P xy za vector giving the direction of the line.v(,)P x y z23Equations for Lines in SpaceSuppose that L is a line in space passing through a pointpara
22、llel to a vector 0000(,)P xy z123vijk.vvvxyzOL0000(,)P xy zv(,)P x y zThen L(,)P x y zfor which0P Puuu vis parallel to v.is the set of all pointsThus for some scalar parameter t.0vP P tThe value of t depends on the location of the point P along the line,and the domain of t is(,).24and this last equa
23、tion can be rewrittenEquations for Lines in Space000123()i()j()k(ijk).xxyyzzvvvtasis0vP P t The expanded form of the equation000123ijkijk(ijk).xyzxyzvvvt(1)xyzOL0000(,)P xy zv(,)P x y z25000123ijkijk(ijk).xyzxyzvvvtThese equations give us the standard parametrization of the line for theparameter int
24、erval.tEquating the corresponding components of the two sides of Equation(1)Gives three scalar equations involving the parameter t:010203,.xxvyyvzzvttt010203,.xxvyyvzzv ttttParametric Equation for a Lineparallel 0000(,)P xy zThe standard parametrization of the line throughis123vijkvvvto(2)Equations
25、for Lines in Space26xyzOvL(,)P x y z0000(,)P xy z0r()r tfollowing vector form for the equation of a line in space.on the line and is the position vector of a pointIfr()t0r(,)P x y zthen we have theis the position vector of point0000(,),P xy zVector Equation for a LineA vector equation for the line L
展开阅读全文